
Pro Machine
Learning
Algorithms

A Hands-On Approach to Implementing
Algorithms in Python and R
—
V Kishore Ayyadevara

www.allitebooks.com

http://www.allitebooks.org

Pro Machine Learning
Algorithms

A Hands-On Approach to
Implementing Algorithms in

Python and R

V Kishore Ayyadevara

www.allitebooks.com

http://www.allitebooks.org

Pro Machine Learning Algorithms

ISBN-13 (pbk): 978-1-4842-3563-8			 ISBN-13 (electronic): 978-1-4842-3564-5
https://doi.org/10.1007/978-1-4842-3564-5

Library of Congress Control Number: 2018947188

Copyright © 2018 by V Kishore Ayyadevara

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestine John Suresh
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3563-8. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

V Kishore Ayyadevara
Hyderabad, Andhra Pradesh, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3564-5
http://www.allitebooks.org

I would like to dedicate this book to my dear parents, Hema and
Subrahmanyeswara Rao, to my lovely wife, Sindhura, and my dearest
daughter, Hemanvi. This work would not have been possible without

their support and encouragement.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: �Basics of Machine Learning��� 1

Regression and Classification�� 1

Training and Testing Data��� 2

The Need for Validation Dataset��� 3

Measures of Accuracy�� 5

AUC Value and ROC Curve�� 7

Unsupervised Learning�� 11

Typical Approach Towards Building a Model�� 12

Where Is the Data Fetched From?�� 12

Which Data Needs to Be Fetched?��� 12

Pre-processing the Data��� 13

Feature Interaction��� 14

Feature Generation��� 14

Building the Models�� 14

Productionalizing the Models��� 14

Build, Deploy, Test, and Iterate�� 15

Summary��� 15

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: �Linear Regression�� 17

Introducing Linear Regression��� 17

Variables: Dependent and Independent�� 18

Correlation�� 18

Causation�� 18

Simple vs. Multivariate Linear Regression��� 18

Formalizing Simple Linear Regression�� 19

The Bias Term��� 19

The Slope�� 20

Solving a Simple Linear Regression�� 20

More General Way of Solving a Simple Linear Regression�� 23

Minimizing the Overall Sum of Squared Error�� 23

Solving the Formula��� 24

Working Details of Simple Linear Regression�� 25

Complicating Simple Linear Regression a Little��� 26

Arriving at Optimal Coefficient Values�� 29

Introducing Root Mean Squared Error�� 29

Running a Simple Linear Regression in R�� 30

Residuals�� 31

Coefficients��� 32

SSE of Residuals (Residual Deviance)�� 34

Null Deviance�� 34

R Squared��� 34

F-statistic��� 35

Running a Simple Linear Regression in Python��� 36

Common Pitfalls of Simple Linear Regression��� 37

Multivariate Linear Regression�� 38

Working details of Multivariate Linear Regression��� 40

Multivariate Linear Regression in R�� 41

Multivariate Linear Regression in Python��� 42

Table of Contents

vii

Issue of Having a Non-significant Variable in the Model�� 42

Issue of Multicollinearity�� 43

Mathematical Intuition of Multicollinearity��� 43

Further Points to Consider in Multivariate Linear Regression�� 44

Assumptions of Linear Regression�� 45

Summary��� 47

Chapter 3: �Logistic Regression�� 49

Why Does Linear Regression Fail for Discrete Outcomes?�� 49

A More General Solution: Sigmoid Curve��� 51

Formalizing the Sigmoid Curve (Sigmoid Activation)�� 52

From Sigmoid Curve to Logistic Regression��� 53

Interpreting the Logistic Regression�� 53

Working Details of Logistic Regression�� 54

Estimating Error�� 56

Least Squares Method and Assumption of Linearity�� 57

Running a Logistic Regression in R��� 59

Running a Logistic Regression in Python��� 61

Identifying the Measure of Interest�� 61

Common Pitfalls��� 68

Time Between Prediction and the Event Happening�� 69

Outliers in Independent variables��� 69

Summary��� 69

Chapter 4: �Decision Tree�� 71

Components of a Decision Tree�� 73

Classification Decision Tree When There Are Multiple Discrete Independent Variables��������������� 74

Information Gain��� 75

Calculating Uncertainty: Entropy�� 75

Calculating Information Gain�� 76

Uncertainty in the Original Dataset��� 76

Measuring the Improvement in Uncertainty��� 77

Table of Contents

viii

Which Distinct Values Go to the Left and Right Nodes��� 79

When Does the Splitting Process Stop?��� 84

Classification Decision Tree for Continuous Independent Variables��� 85

Classification Decision Tree When There Are Multiple Independent Variables����������������������������� 88

Classification Decision Tree When There Are Continuous and Discrete
Independent Variables�� 93

What If the Response Variable Is Continuous?��� 94

Continuous Dependent Variable and Multiple Continuous Independent Variables����������������� 95

Continuous Dependent Variable and Discrete Independent Variable�������������������������������������� 97

Continuous Dependent Variable and Discrete, Continuous Independent Variables���������������� 98

Implementing a Decision Tree in R��� 99

Implementing a Decision Tree in Python�� 99

Common Techniques in Tree Building�� 100

Visualizing a Tree Build�� 101

Impact of Outliers on Decision Trees�� 102

Summary��� 103

Chapter 5: �Random Forest��� 105

A Random Forest Scenario��� 105

Bagging�� 107

Working Details of a Random Forest�� 107

Implementing a Random Forest in R�� 108

Parameters to Tune in a Random Forest�� 112

Variation of AUC by Depth of Tree��� 114

Implementing a Random Forest in Python��� 116

Summary��� 116

Chapter 6: �Gradient Boosting Machine�� 117

Gradient Boosting Machine�� 117

Working details of GBM�� 118

Shrinkage��� 123

Table of Contents

ix

AdaBoost�� 126

Theory of AdaBoost�� 126

Working Details of AdaBoost�� 127

Additional Functionality for GBM�� 132

Implementing GBM in Python��� 132

Implementing GBM in R��� 133

Summary��� 134

Chapter 7: �Artificial Neural Network��� 135

Structure of a Neural Network��� 136

Working Details of Training a Neural Network��� 138

Forward Propagation�� 138

Applying the Activation Function�� 141

Back Propagation��� 146

Working Out Back Propagation��� 146

Stochastic Gradient Descent�� 148

Diving Deep into Gradient Descent��� 148

Why Have a Learning Rate?�� 152

Batch Training�� 152

The Concept of Softmax��� 153

Different Loss Optimization Functions��� 155

Scaling a Dataset��� 156

Implementing Neural Network in Python��� 157

Avoiding Over-fitting using Regularization��� 160

Assigning Weightage to Regularization term��� 162

Implementing Neural Network in R�� 163

Summary��� 165

Table of Contents

x

Chapter 8: �Word2vec��� 167

Hand-Building a Word Vector��� 168

Methods of Building a Word Vector�� 173

Issues to Watch For in a Word2vec Model��� 174

Frequent Words�� 174

Negative Sampling��� 175

Implementing Word2vec in Python�� 175

Summary��� 178

Chapter 9: �Convolutional Neural Network��� 179

The Problem with Traditional NN�� 180

Scenario 1�� 183

Scenario 2�� 184

Scenario 3�� 185

Scenario 4�� 186

Understanding the Convolutional in CNN��� 187

From Convolution to Activation��� 189

From Convolution Activation to Pooling�� 189

How Do Convolution and Pooling Help?��� 190

Creating CNNs with Code��� 190

Working Details of CNN�� 194

Deep Diving into Convolutions/Kernels�� 203

From Convolution and Pooling to Flattening: Fully Connected Layer��� 205

From One Fully Connected Layer to Another�� 206

From Fully Connected Layer to Output Layer��� 206

Connecting the Dots: Feed Forward Network�� 206

Other Details of CNN�� 207

Backward Propagation in CNN��� 209

Putting It All Together��� 210

Table of Contents

xi

Data Augmentation�� 212

Implementing CNN in R�� 214

Summary��� 215

Chapter 10: �Recurrent Neural Network��� 217

Understanding the Architecture��� 218

Interpreting an RNN��� 219

Working Details of RNN�� 220

Time Step 1�� 224

Time Step 2�� 224

Time Step 3�� 225

Implementing RNN: SimpleRNN��� 227

Compiling a Model�� 228

Verifying the Output of RNN�� 230

Implementing RNN: Text Generation�� 234

Embedding Layer in RNN��� 238

Issues with Traditional RNN��� 243

The Problem of Vanishing Gradient�� 244

The Problem of Exploding Gradients�� 245

LSTM�� 245

Implementing Basic LSTM in keras�� 247

Implementing LSTM for Sentiment Classification�� 255

Implementing RNN in R�� 256

Summary��� 257

Chapter 11: �Clustering��� 259

Intuition of clustering��� 259

Building Store Clusters for Performance Comparison�� 260

Ideal Clustering�� 261

Striking a Balance Between No Clustering and Too Much Clustering:
K-means Clustering�� 262

Table of Contents

xii

The Process of Clustering�� 264

Working Details of K-means Clustering Algorithm��� 268

Applying the K-means Algorithm on a Dataset��� 269

Properties of the K-means Clustering Algorithm�� 271

Implementing K-means Clustering in R��� 274

Implementing K-means Clustering in Python�� 275

Significance of the Major Metrics�� 276

Identifying the Optimal K��� 276

Top-Down Vs. Bottom-Up Clustering�� 278

Hierarchical Clustering��� 278

Major Drawback of Hierarchical Clustering�� 280

Industry Use-Case of K-means Clustering��� 280

Summary��� 281

Chapter 12: �Principal Component Analysis��� 283

Intuition of PCA�� 283

Working Details of PCA�� 286

Scaling Data in PCA��� 291

Extending PCA to Multiple Variables�� 291

Implementing PCA in R�� 294

Implementing PCA in Python�� 295

Applying PCA to MNIST�� 296

Summary��� 297

Chapter 13: �Recommender Systems��� 299

Understanding k-nearest Neighbors�� 300

Working Details of User-Based Collaborative Filtering�� 302

Euclidian Distance�� 303

Cosine Similarity��� 306

Issues with UBCF�� 311

Item-Based Collaborative Filtering��� 312

Implementing Collaborative Filtering in R�� 313

Table of Contents

xiii

Implementing Collaborative Filtering in Python��� 314

Working Details of Matrix Factorization��� 315

Implementing Matrix Factorization in Python�� 321

Implementing Matrix Factorization in R��� 324

Summary��� 325

Chapter 14: �Implementing Algorithms in the Cloud�� 327

Google Cloud Platform��� 327

Microsoft Azure Cloud Platform��� 331

Amazon Web Services�� 333

Transferring Files to the Cloud Instance�� 340

Running Instance Jupyter Notebooks from Your Local Machine�� 342

Installing R on the Instance��� 343

Summary��� 344

�Appendix: Basics of Excel, R, and Python�� 345

�Basics of Excel��� 345

Basics of R��� 347

�Downloading R��� 348

�Installing and Configuring RStudio��� 348

�Getting Started with RStudio�� 349

�Basics of Python�� 356

Downloading and installing Python�� 356

Basic operations in Python��� 358

Numpy�� 360

�Number generation using Numpy��� 361

�Slicing and indexing��� 362

�Pandas�� 363

�Indexing and slicing using Pandas��� 363

�Summarizing data�� 364

�Index�� 365

Table of Contents

xv

About the Author

V Kishore Ayyadevara is passionate about all things data.

He has been working at the intersection of technology, data,

and machine learning to identify, communicate, and solve

business problems for more than a decade. 

He’s worked for American Express in risk management,

in Amazon's supply chain analytics teams, and is currently

leading data product development for a startup. In this role,

he is responsible for implementing a variety of analytical

solutions and building strong data science teams. He

received his MBA from IIM Calcutta.

Kishore is an active learner, and his interests include

identifying business problems that can be solved using data, simplifying the complexity

within data science, and in transferring techniques across domains to achieve

quantifiable business results.

He can be reached at www.linkedin.com/in/kishore-ayyadevara/

http://www.linkedin.com/in/kishore-ayyadevara/

xvii

About the Technical Reviewer

Manohar Swamynathan is a data science practitioner and

an avid programmer, with more than 13 years of experience

in various data science–related areas, including data

warehousing, business intelligence (BI), analytical tool

development, ad-hoc analysis, predictive modeling, data

science product development, consulting, formulating

strategy, and executing analytics programs. He’s made a

career covering the lifecycle of data across different domains,

including the US mortgage banking, retail/e-commerce,

insurance, and industrial IoT. He has a bachelor’s

degree with a specialization in physics, mathematics,

and computers, and a master’s degree in project management. He currently lives in

Bengaluru, the Silicon Valley of India. 

He is the author of the book Mastering Machine Learning with Python in Six Steps

(Apress, 2017). You can learn more about his various other activities on his website:

www.mswamynathan.com.

http://www.mswamynathan.com/

xix

Acknowledgments

I am grateful to my wife, Sindhura, for her love and constant support and for being a

source of inspiration all through.

Sincere thanks to the Apress team, Celestin, Divya, and Matt, for their support and

belief in me. Special thanks to Manohar for his review and helpful feedback. This book

would not have been in this shape, without the great support from Arockia Rajan and

Corbin Collins.

Thanks to Santanu Pattanayak and Antonio Gulli, who reviewed a few chapters, and

also a few individuals in my organization who helped me considerably in proofreading

and initial reviews: Praveen Balireddy, Arunjith, Navatha Komatireddy, Aravind Atreya,

and Anugna Reddy.

xxi

Introduction

Machine learning techniques are being adopted for a variety of applications. With

an increase in the adoption of machine learning techniques, it is very important for

the developers of machine learning applications to understand what the underlying

algorithms are learning, and more importantly, to understand how the various

algorithms are learning the patterns from raw data so that they can be leveraged even

more effectively.

This book is intended for data scientists and analysts who are interested in looking

under the hood of various machine learning algorithms. This book will give you the

confidence and skills when developing the major machine learning models and when

evaluating a model that is presented to you.

True to the spirit of understanding what the machine learning algorithms are

learning and how they are learning them, we first build the algorithms in Excel so that we

can peek inside the black box of how the algorithms are working. In this way, the reader

learns how the various levers in an algorithm impact the final result.

Once we’ve seen how the algorithms work, we implement them in both Python

and R. However, this is not a book on Python or R, and I expect the reader to have some

familiarity with programming. That said, the basics of Excel, Python, and R are explained

in the appendix.

Chapter 1 introduces the basic terminology of data science and discusses the typical

workflow of a data science project.

Chapters 2–10 cover some of the major supervised machine learning and deep

learning algorithms used in industry.

Chapters 11 and 12 discuss the major unsupervised learning algorithms.

In Chapter 13, we implement the various techniques used in recommender systems

to predict the likelihood of a user liking an item.

Finally, Chapter 14 looks at using the three major cloud service providers: Google

Cloud Platform, Microsoft Azure, and Amazon Web Services.

All the datasets used in the book and the code snippets are available on GitHub at

https://github.com/kishore-ayyadevara/Pro-Machine-Learning.

https://github.com/kishore-ayyadevara/Pro-Machine-Learning

1
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_1

CHAPTER 1

Basics of Machine
Learning
Machine learning can be broadly classified into supervised and unsupervised learning.

By definition, the term supervised means that the “machine” (the system) learns with the

help of something—typically a labeled training data.

Training data (or a dataset) is the basis on which the system learns to infer. An

example of this process is to show the system a set of images of cats and dogs with the

corresponding labels of the images (the labels say whether the image is of a cat or a dog)

and let the system decipher the features of cats and dogs.

Similarly, unsupervised learning is the process of grouping data into similar

categories. An example of this is to input into the system a set of images of dogs and cats

without mentioning which image belongs to which category and let the system group the

two types of images into different buckets based on the similarity of images.

In this chapter, we will go through the following:

•	 The difference between regression and classification

•	 The need for training, validation, and testing data

•	 The different measures of accuracy

�Regression and Classification
Let’s assume that we are forecasting for the number of units of Coke that would be sold

in summer in a certain region. The value ranges between certain values—let’s say

1 million to 1.2 million units per week. Typically, regression is a way of forecasting for

such continuous variables.

2

Classification or prediction, on the other hand, predicts for events that have few

distinct outcomes—for example, whether a day will be sunny or rainy.

Linear regression is a typical example of a technique to forecast continuous

variables, whereas logistic regression is a typical technique to predict discrete variables.

There are a host of other techniques, including decision trees, random forests, GBM,

neural networks, and more, that can help predict both continuous and discrete

outcomes.

�Training and Testing Data
Typically, in regression, we deal with the problem of generalization/overfitting.

Overfitting problems arise when the model is so complex that it perfectly fits all the

data points, resulting in a minimal possible error rate. A typical example of an overfitted

dataset looks like Figure 1-1.

From the dataset in the figure, you can see that the straight line does not fit all the

data points perfectly, whereas the curved line fits the points perfectly—hence the curve

has minimal error on the data points on which it is trained.

Figure 1-1.  An overfitted dataset

Chapter 1 Basics of Machine Learning

3

However, the straight line has a better chance of being more generalizable when

compared to the curve on a new dataset. So, in practice, regression/classification is a

trade-off between the generalizability of the model and complexity of model.

The lower the generalizability of the model, the higher the error rate will be on

“unseen” data points.

This phenomenon can be observed in Figure 1-2. As the complexity of the model

increases, the error rate of unseen data points keeps reducing up to a point, after which

it starts increasing again. However, the error rate on training dataset keeps on decreasing

as the complexity of model increases - eventually leading to overfitting.

The unseen data points are the points that are not used in training the model, but are

used in testing the accuracy of the model, and so are called testing data or test data.

�The Need for Validation Dataset
The major problem in having a fixed training and testing dataset is that the test dataset

might be very similar to the training dataset, whereas a new (future) dataset might not

be very similar to the training dataset. The result of a future dataset not being similar to a

training dataset is that the model’s accuracy for the future dataset may be very low.

Figure 1-2.  Error rate in unseen data points

Chapter 1 Basics of Machine Learning

4

An intuition of the problem is typically seen in data science competitions and

hackathons like Kaggle (www.kaggle.com). The public leaderboard is not always the

same as the private leaderboard. Typically, for a test dataset, the competition organizer

will not tell the users which rows of the test dataset belong to the public leaderboard and

which belong to the private leaderboard. Essentially, a randomly selected subset of test

dataset goes to the public leaderboard and the rest goes to the private leaderboard.

One can think of the private leaderboard as a test dataset for which the accuracy is

not known to the user, whereas with the public leaderboard the user is told the accuracy

of the model.

Potentially, people overfit on the basis of the public leaderboard, and the private

leaderboard might be a slightly different dataset that is not highly representative of the

public leaderboard’s dataset.

The problem can be seen in Figure 1-3.

In this case, you would notice that a user moved down from rank 17 to rank 47 when

compared between public and private leaderboards. Cross-validation is a technique that

helps avoid the problem. Let’s go through the workings in detail.

If we only have a training and testing dataset, given that the testing dataset would be

unseen by the model, we would not be in a position to come up with the combination

of hyper-parameters (A hyper-parameter can be thought of as a knob that we change

to improve our model’s accuracy) that maximize the model’s accuracy on unseen data

unless we have a third dataset. Validation is the third dataset that can be used to see

how accurate the model is when the hyper-parameters are changed. Typically, out of the

100% data points in a dataset, 60% are used for training, 20% are used for validation, and

the remaining 20% are for testing the dataset.

Figure 1-3.  The problem illustrated

Chapter 1 Basics of Machine Learning

http://www.kaggle.com/

5

Another idea for a validation dataset goes like this: assume that you are building a

model to predict whether a customer is likely to churn in the next two months. Most of

the dataset will be used to train the model, and the rest can be used to test the dataset.

But in most of the techniques we will deal with in subsequent chapters, you’ll notice that

they involve hyper-parameters.

As we keep changing the hyper-parameters, the accuracy of a model varies by quite

a bit, but unless there is another dataset, we cannot ascertain whether accuracy is

improving. Here’s why:

	 1.	 We cannot test a model’s accuracy on the dataset on which it is

trained.

	 2.	 We cannot use the result of test dataset accuracy to finalize the

ideal hyper-parameters, because, practically, the test dataset is

unseen by the model.

Hence, the need for a third dataset—the validation dataset.

�Measures of Accuracy
In a typical linear regression (where continuous values are predicted), there are a couple

of ways of measuring the error of a model. Typically, error is measured on the testing

dataset, because measuring error on the training dataset (the dataset a model is built

on) is misleading—as the model has already seen the data points, and we would not be

in a position to say anything about the accuracy on a future dataset if we test the model’s

accuracy on the training dataset only. That’s why error is always measured on the dataset

that is not used to build a model.

�Absolute Error

Absolute error is defined as the absolute value of the difference between forecasted value

and actual value. Let’s imagine a scenario as follows:

Actual value Predicted value Error Absolute error

Data point 1 100 120 20 20

Data point 2 100 80 –20 20

Overall 200 200 0 40

Chapter 1 Basics of Machine Learning

6

In this scenario, we might incorrectly see that the overall error is 0 (because one error

is +20 and the other is –20). If we assume that the overall error of the model is 0, we are

missing the fact that the model is not working well on individual data points.

To avoid the issue of a positive error and negative error cancelling out each other and

thus resulting in minimal error, we consider the absolute error of a model, which in this

case is 40, and the absolute error rate is 40 / 200 = 20%

�Root Mean Square Error

Another approach to solving the problem of inconsistent signs of error is to square

the error (the square of a negative number is a positive number). The scenario under

discussion above can be translated as follows:

Actual value Predicted value Error Squared error

Data point 1 100 120 20 400

Data point 2 100 80 –20 400

Overall 200 200 0 800

Now the overall squared error is 800, and the root mean squared error (RMSE) is the

square root of (800 / 2), which is 20.

�Confusion Matrix

Absolute error and RMSE are applicable while predicting continuous variables. However,

predicting an event with discrete outcomes is a different process. Discrete event

prediction happens in terms of probability—the result of the model is a probability

that a certain event happens. In such cases, even though absolute error and RMSE can

theoretically be used, there are other relevant metrics.

A confusion matrix counts the number of instances when the model predicted the

outcome of an event and measures it against the actual values, as follows:

Predicted fraud Predicted non-fraud

Actual fraud True positive (TP) False negative (FN)

Actual non-fraud False positive (FP) True negative (TN)

Chapter 1 Basics of Machine Learning

7

•	 Sensitivity or true positive rate or recall = true positive / (total

positives) = TP/ (TP + FN)

•	 Specificity or true negative rate = true negative / (total negative) =

TN / (FP + TN)

•	 Precision or positive predicted value = TP / (TP + FP)

•	 Recall = TP / (TP+FN)

•	 Accuracy = (TP + TN) / (TP + FN + FP + TN)

•	 F1 score = 2TP/ (2TP + FP + FN)

�AUC Value and ROC Curve
Let’s say you are consulting for an operations team that manually reviews e-commerce

transactions to see if they are fraud or not.

•	 The cost associated with such a process is the manpower required to

review all the transactions.

•	 The benefit associated with the cost is the number of fraudulent

transactions that are preempted because of the manual review.

•	 The overall profit associated with this setup above is the money saved

by preventing fraud minus the cost of manual review.

In such a scenario, a model can come in handy as follows: we could come up

with a model that gives a score to each transaction. Each transaction is scored on the

probability of being a fraud. This way, all the transactions that have very little chances

of being a fraud need not be reviewed by a manual reviewer. The benefit of the model

thus would be to reduce the number of transactions that need to be reviewed, thereby

reducing the amount of human resources needed to review the transactions and

reducing the cost associated with the reviews. However, because some transactions are

not reviewed, however small the probability of fraud is, there could still be some fraud

that is not captured because some transactions are not reviewed.

In that scenario, a model could be helpful if it improves the overall profit by reducing

the number of transactions to be reviewed (which, hopefully, are the transactions that

are less likely to be fraud transactions).

Chapter 1 Basics of Machine Learning

8

The steps we would follow in calculating the area under the curve (AUC) are as

follows:

	 1.	 Score each transaction to calculate the probability of fraud. (The

scoring is based on a predictive model—more details on this in

Chapter 3.)

	 2.	 Order the transactions in descending order of probability.

There should be very few data points that are non-frauds at the top of the ordered

dataset and very few data points that are frauds at the bottom of the ordered dataset.

AUC value penalizes for having such anomalies in the dataset.

For now, let’s assume a total of 1,000,000 transactions are to be reviewed, and based

on history, on average 1% of the total transactions are fraudulent.

•	 The x-axis of the receiver operating characteristic (ROC) curve is the

cumulative number of points (transactions) considered.

•	 The y-axis is the cumulative number of fraudulent transactions

captured.

Once we order the dataset, intuitively all the high-probability transactions

are fraudulent transactions, and low-probability transactions are not fraudulent

transactions. The cumulative number of frauds captured increases as we look at the

initial few transactions, and after a certain point, it saturates as a further increase in

transactions would not increase fraudulent transactions.

The graph of cumulative transactions reviewed on the x-axis and cumulative frauds

captured on the y-axis would look like Figure 1-4.

Chapter 1 Basics of Machine Learning

9

In this scenario, we have a total of 10,000 fraudulent transactions out of a total

1,000,000 transactions. That’s an average 1% fraudulent rate—that is, one out of every

100 transactions is fraudulent.

If we do not have any model, our random guess would increment slowly, as shown in

Figure 1-5.

Figure 1-4.  Cumulative frauds captured when using a model

Chapter 1 Basics of Machine Learning

10

In Figure 1-5, you can see that the line divides the total dataset into two roughly

equal parts—the area under the line is equal to 0.5 times of the total area. For convenience,

if we assume that the total area of the plot is 1 unit, then the total area under the line

generated by random guess model would be 0.5.

A comparison of the cumulative frauds captured based on the predictive model and

random guess would be as shown in Figure 1-6.

Figure 1-5.  Cumulative frauds captured when transactions are randomly sampled

Chapter 1 Basics of Machine Learning

11

Note that the area under the curve (AUC) below the curve generated by the

predictive model is > 0.5 in this instance.

Thus, the higher the AUC, the better the predictive power of the model.

�Unsupervised Learning
So far we have looked at supervised learning, where there is a dependent variable (the

variable we are trying to predict) and an independent variable (the variable(s) we use to

predict the dependent variable value).

However, in some scenarios, we would only have the independent variables—for

example, in cases where we have to group customers based on certain characteristics.

Unsupervised learning techniques come in handy in those cases.

There are two major types of unsupervised techniques:

•	 Clustering-based approach

•	 Principal components analysis (PCA)

Figure 1-6.  Comparison of cumulative frauds

Chapter 1 Basics of Machine Learning

12

Clustering is an approach where rows are grouped, and PCA is an approach where

columns are grouped. We can think of clustering as being useful in assigning a given

customer into one or the other group (because each customer typically represents a row

in the dataset), whereas PCA can be useful in grouping columns (alternatively, reducing

the dimensionality/variables of data).

Though clustering helps in segmenting customers, it can also be a powerful pre-

processing step in our model-building process (you’ll read more about that in Chapter 11).

PCA can help speed up the model-building process by reducing the number of dimensions,

thereby reducing the number of parameters to estimate.

In this book, we will be dealing with a majority of supervised and unsupervised

algorithms as follows:

	 1.	 We first hand-code them in Excel.

	 2.	 We implement in R.

	 3.	 We implement in Python.

The basics of Excel, R and Python are outlined in the appendix.

�Typical Approach Towards Building a Model
In the previous section, we saw a scenario of the cost-benefit analysis of an operations

team implementing the predictive models in a real-world scenario. In this section, we’ll

look at some of the points you should consider while building the predictive models.

�Where Is the Data Fetched From?
Typically, data is available in tables in database, CSV, or text files. In a database, different

tables may be capturing different information. For example, in order to understand

fraudulent transactions, we would be likely to join a transactions table with customer

demographics table to derive insights from data.

�Which Data Needs to Be Fetched?
The output of a prediction exercise is only as good as the inputs that go into the model.

The key part in getting the input right is understanding the drivers/ characteristics of

what we are trying to predict better—in our case, understanding the characteristics of a

fraudulent transaction better.

Chapter 1 Basics of Machine Learning

13

Here is where a data scientist typically dons the hat of a management consultant.

They research the factors that might be driving the event they are trying to predict.

They could do that by reaching out to the people who are working in the front line—for

example, the fraud risk investigators who are manually reviewing the transactions—to

understand the key factors that they look at while investigating a transaction.

�Pre-processing the Data
The input data does not always come in clean every time. There may be multiple issues

that need to be handled before building a model:

•	 Missing values in data: Missing values in data exist when a variable

(data point) is not recorded or when joins across different tables

result in a nonexistent value.

•	 Missing values can be imputed in a few ways. The simplest is by

replacing the missing value with the average/ median of the column.

Another way to replace a missing value is to add some intelligence

based on the rest of variables available in a transaction. This method

is known as identifying the K-nearest neighbors (more on this in

Chapter 13).

•	 Outliers in data: Outliers within the input variables result in

inefficient optimization across the regression-based techniques

(Chapter 2 talks more about the affect of outliers). Typically outliers

are handled by capping variables at a certain percentile value (95%,

for example).

•	 Transformation of variables: The variable transformations available

are as follows:

•	 Scaling a variable: Scaling a variable in cases of techniques based

on gradient descent generally result in faster optimization.

•	 Log/Squared transformation: Log/Squared transformation comes

in handy in scenarios where the input variable shares a non-

linear relation with the dependent variable.

Chapter 1 Basics of Machine Learning

14

�Feature Interaction
Consider the scenario where, the chances of a person’s survival on the Titanic is high

when the person is male and also has low age. A typical regression-based technique

would not take such a feature interaction into account, whereas a tree-based technique

would. Feature interaction is the process of creating new variables based on a

combination of variables. Note that, more often than not, feature interaction is known by

understanding the business (the event that we are trying to predict) better.

�Feature Generation
Feature generation is a process of finding additional features from the dataset. For

example, a feature for predicting fraudulent transaction would be time since the last

transaction for a given transaction. Such features are not available straightaway, but can

only be derived by understanding the problem we are trying to solve.

�Building the Models
Once the data is in place and the pre-processing steps are done, building a predictive

model would be the next step. Multiple machine learning techniques would be helpful

in building a predictive model. Details on the major machine learning techniques are

explored in the rest of chapters.

�Productionalizing the Models
Once the final model is in place, productionalizing a model varies, depending on

the use case. For example, a data scientist can do an offline analysis looking at the

historical purchases of a customer and come up with a list of products that are to be

sent as recommendation over email, customized for the specific customer. In another

scenario, online recommendation systems work on a real-time basis and a data scientist

might have to provide the model to a data engineer who then implements the model in

production to generate recommendations on a real time basis.

Chapter 1 Basics of Machine Learning

15

�Build, Deploy, Test, and Iterate
In general, building a model is not a one-time exercise. You need to show the value of

moving from the prior process to a new process. In such a scenario, you typically follow

the A/B testing or test/control approach, where the models are deployed only for a small

amount of total possible transactions/customers. The two groups are then compared

to see whether the deployment of models has indeed resulted in an improvement in

the metric the business is interested in achieving. Once the model shows promise, it is

expanded to more total possible transactions/customers. Once consensus is reached

that the model is promising, it is accepted as a final solution. Otherwise, the data

scientist reiterates with the new information from the previous A/B testing experiment.

�Summary
In this chapter, we looked into the basic terminology of machine learning. We also

discussed the various error measures you can use in evaluating a model. And we talked

about the various steps involved in leveraging machine learning algorithms to solve a

business problem.

Chapter 1 Basics of Machine Learning

17
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_2

CHAPTER 2

Linear Regression
In order to understand linear regression, let’s parse it:

•	 Linear: Arranged in or extending along a straight or nearly straight

line, as in “linear movement.”

•	 Regression: A technique for determining the statistical relationship

between two or more variables where a change in one variable is

caused by a change in another variable.

Combining those, we can define linear regression as a relationship between two variables

where an increase in one variable impacts another variable to increase or decrease

proportionately (that is, linearly).

In this chapter, we will learn the following:

•	 How linear regression works

•	 Common pitfalls to avoid while building linear regression

•	 How to build linear regression in Excel, Python, and R

�Introducing Linear Regression
Linear regression helps in interpolating the value of an unknown variable (a continuous

variable) based on a known value. An application of it could be, “What is the demand

for a product as the price of the product is varied?” In this application, we would have to

look at the demand based on historical prices and make an estimate of demand given a

new price point.

Given that we are looking at history in order to estimate a new price point, it

becomes a regression problem. The fact that price and demand are linearly related to

each other (the higher the price, the lower the demand and vice versa) makes it a linear

regression problem.

18

�Variables: Dependent and Independent
A dependent variable is the value that we are predicting for, and an independent variable

is the variable that we are using to predict a dependent variable.

For example, temperature is directly proportional to the number of ice creams

purchased. As temperature increases, the number of ice creams purchased would also

increase. Here temperature is the independent variable, and based on it the number of

ice creams purchased (the dependent variable) is predicted.

�Correlation
From the preceding example, we may notice that ice cream purchases are directly

correlated (that is, they move in the same or opposite direction of the independent

variable, temperature) with temperature. In this example, the correlation is positive:

as temperature increases, ice cream sales increase. In other cases, correlation could

be negative: for example, sales of an item might increase as the price of the item is

decreased.

�Causation
Let’s flip the scenario that ice cream sales increase as temperature increases (high + ve

correlation). The flip would be that temperature increases as ice cream sales increase

(high + ve correlation, too).

However, intuitively we can say with confidence that temperature is not controlled by

ice cream sales, although the reverse is true. This brings up the concept of causation—

that is, which event influences another event. Temperature influences ice cream sales—

but not vice versa.

�Simple vs. Multivariate Linear Regression
We’ve discussed the relationship between two variables (dependent and independent).

However, a dependent variable is not influenced by just one variable but by a multitude

of variables. For example, ice cream sales are influenced by temperature, but they are

also influenced by the price at which ice cream is being sold, along with other factors

such as location, ice cream brand, and so on.

Chapter 2 Linear Regression

19

In the case of multivariate linear regression, some of the variables will be positively

correlated with the dependent variable and some will be negatively correlated with it.

�Formalizing Simple Linear Regression
Now that we have the basic terms in place, let’s dive into the details of linear regression.

A simple linear regression is represented as:

Y a b X= + *

•	 Y is the dependent variable that we are predicting for.

•	 X is the independent variable.

•	 a is the bias term.

•	 b is the slope of the variable (the weight assigned to the independent

variable).

Y and X, the dependent and independent variables should be clear enough now.

Let’s get introduced to the bias and weight terms (a and b in the preceding equation).

�The Bias Term
Let’s look at the bias term through an example: estimating the weight of a baby by the

baby’s age in months. We’ll assume that the weight of a baby is solely dependent on how

many months old the baby is. The baby is 3 kg when born and its weight increases at a

constant rate of 0.75 kg every month.

At the end of year, the chart of baby weight looks like Figure 2-1.

Chapter 2 Linear Regression

20

In Figure 2-1, the baby’s weight starts at 3 (a, the bias) and increases linearly by 0.75

(b, the slope) every month. Note that, a bias term is the value of the dependent variable

when all the independent variables are 0.

�The Slope
The slope of a line is the difference between the x and y coordinates at both extremes

of the line upon the length of line. In the preceding example, the value of slope (b) is as

follows:

(Difference between y coordinates at both extremes) / (Difference between x

coordinates at both extremes)

b =
-
-()

= =
12 3

12 0
9 12 0 75/ .

�Solving a Simple Linear Regression
We’ve seen a simple example of how the output of a simple linear regression might look

(solving for bias and slope). In this section, we’ll take the first steps towards coming up with

a more generalized way to generate a regression line. The dataset provided is as follows:

Figure 2-1.  Baby weight over time in months

Chapter 2 Linear Regression

21

Age in months Weight in kg

0 3

1 3.75

2 4.5

3 5.25

4 6

5 6.75

6 7.5

7 8.25

8 9

9 9.75

10 10.5

11 11.25

12 12

A visualization of the data is shown in Figure 2-2.

Figure 2-2.  Visualizing baby weight

Chapter 2 Linear Regression

22

In Figure 2-2, the x-axis is the baby’s age in months, and the y-axis is the weight of the

baby in a given month. For example, the weight of the baby in the first month is 3.75 kg.

Let’s solve the problem from first principles. We’ll assume that the dataset has only 2

data points, not 13—but, just the first 2 data points. The dataset would look like this:

Age in months Weight in kg

0 3

1 3.75

Given that we are estimating the weight of the baby based on its age, the linear

regression can be built as follows:

3 0= + ()a b *

3 75 1. *= + ()a b

Solving that, we see that a = 3 and b = 0.75.

Let’s apply the values of a and b on the remaining 11 data points above. The result

would look like this:

Age in months Weight In kg Estimate of weight Squared error of estimate

0 3 3 0

1 3.75 3.75 0

2 4.5 4.5 0

3 5.25 5.25 0

4 6 6 0

5 6.75 6.75 0

6 7.5 7.5 0

7 8.25 8.25 0

8 9 9 0

9 9.75 9.75 0

10 10.5 10.5 0

11 11.25 11.25 0

12 12 12 0

Overall squared error 0

Chapter 2 Linear Regression

23

As you can see, the problem can be solved with minimal error rate by solving the first

two data points only. However, this would likely not be the case in practice because most

real data is not as clean as is presented in the table.

�More General Way of Solving a Simple Linear
Regression
In the preceding scenario, we saw that the coefficients are obtained by using just two

data points from the total dataset—that is, we have not considered a majority of the

observations in coming up with optimal a and b. To avoid leaving out most of the data

points while building the equation, we can modify the objective as minimizing the

overall squared error (ordinary least squares) across all the data points.

�Minimizing the Overall Sum of Squared Error
Overall squared error is defined as the sum of the squared difference between actual

and predicted values of all the observations. The reason we consider squared error value

and not the actual error value is that we do not want positive error in some data points

offsetting for negative error in other data points. For example, an error of +5 in three data

points offsets an error of –5 in three other data points, resulting in an overall error of 0

among the six data points combined. Squared error converts the –5 error of the latter

three data points into a positive number, so that the overall squared error then becomes

6 × 52 = 150.

This brings up a question: why should we minimize overall squared error? The

principle is as follows:

	 1.	 Overall error is minimized if each individual data point is

predicted correctly.

	 2.	 In general, overprediction by 5% is equally as bad as

underprediction by 5%, hence we consider the squared error.

Chapter 2 Linear Regression

24

Let’s formulate the problem:

Age in months Weight in kg Formula
Estimate of weight when
a = 3 and b = 0.75

Squared error
of estimate

0 3 3 = a + b × (0) 3 0

1 3.75 3.75 = a + b × (1) 3.75 0

2 4.5 4.5 = a + b × (2) 4.5 0

3 5.25 5.25 = a + b × (3) 5.25 0

4 6 6 = a + b × (4) 6 0

5 6.75 6.75 = a + b × (5) 6.75 0

6 7.5 7.5 = a + b × (6) 7.5 0

7 8.25 8.25 = a + b × (7) 8.25 0

8 9 9 = a + b × (8) 9 0

9 9.75 9.75 = a + b × (9) 9.75 0

10 10.5 10.5 = a + b × (10) 10.5 0

11 11.25 11.25 = a + b × (11) 11.25 0

12 12 12 = a + b × (12) 12 0

Overall squared error 0

Linear regression equation is represented in the Formula column in the preceding

table.

Once the dataset (the first two columns) are converted into a formula (column 3),

linear regression is a process of solving for the values of a and b in the formula column

so that the overall squared error of estimate (the sum of squared error of all data points)

is minimized.

�Solving the Formula
The process of solving the formula is as simple as iterating over multiple combinations

of a and b values so that the overall error is minimized as much as possible. Note that

the final combination of optimal a and b value is obtained by using a technique called

gradient descent, which is explored in Chapter 7.

Chapter 2 Linear Regression

25

�Working Details of Simple Linear Regression
Solving for a and b can be understood as a goal seek problem in Excel, where Excel is

helping identify the values of a and b that minimize the overall value.

To see how this works, look at the following dataset (available as “linear regression

101.xlsx” in github):

You should understand the following by checking the below in dataset:

	 1.	 How cells H3 and H4 are related to column D (estimate of weight)

	 2.	 The formula of column E

	 3.	 Cell E15, the sum of squared error for each data point

	 4.	 To obtain the optimal values of a and b (in cells H3 and H4)—go to

Solver in Excel and add the following constraints:

a.	 Minimize the value in cell E15

b.	 By changing cells H3 and H4

Chapter 2 Linear Regression

26

�Complicating Simple Linear Regression a Little
In the preceding example, we started with a scenario where the values fit perfectly: a = 3

and b = 0.75.

The reason for zero error rate is that we defined the scenario first and then defined

the approach—that is, a baby is 3 kg at birth and the weight increases by 0.75 kg every

month. However, in practice the scenario is different: “Every baby is different.”

Let’s visualize this new scenario through a dataset (available as “Baby age to weight

relation.xlsx” in github). Here, we have the age and weight measurement of two different

babies.

The plot of age-to-weight relationship now looks like Figure 2-3.

Chapter 2 Linear Regression

27

The value of weight increases as age increases, but not in the exact trend of starting

at 3 kg and increasing by 0.75 kg every month, as seen in the simplest example.

To solve for this, we go through the same rigor we did earlier:

	 1.	 Initialize with arbitrary values of a and b (for example, each equals 1).

	 2.	 Make a new column for the forecast with the value of

a + b × X – column C.

	 3.	 Make a new column for squared error, column D.

	 4.	 Calculate overall error in cell G7.

	 5.	 Invoke the Solver to minimize cell G7 by changing cells a and b

—that is, G3 and G4.

Figure 2-3.  Age-to-weight reltionship

Chapter 2 Linear Regression

28

The cell connections in the preceding scenario are as follows:

The cell values of G3 and G4 that minimize the overall error are the optimal values of

a and b.

Chapter 2 Linear Regression

29

�Arriving at Optimal Coefficient Values
Optimal values of coefficients are arrived at using a technique called gradient descent.

Chapter 7 contains a detailed discussion of how gradient descent works, but for now,

let’s begin to understand gradient descent using the following steps:

	 1.	 Initialize the value of coefficients (a and b) randomly.

	 2.	 Calculate the cost function—that is, the sum of squared error

across all the data points in the training dataset.

	 3.	 Change the value of coefficients slightly, say, +1% of its value.

	 4.	 Check whether, by changing the value of coefficients slightly,

overall squared error decreases or increases.

	 5.	 If overall squared error decreases by changing the value of

coefficient by +1%, then proceed further, else reduce the

coefficient by 1%.

	 6.	 Repeat steps 2–4 until overall squared error is the least.

�Introducing Root Mean Squared Error
So far, we have seen that the overall error is the sum of the square of difference between

forecasted and actual values for each data point. Note that, in general, as the number of

data points increase, the overall squared error increases.

In order to normalize for the number of observations in data—that is, having a

meaningful error measure, we would consider the square root of mean of error (as we

have squared the difference while calculating error). Root mean squared error (RMSE) is

calculated as follows (in cell G9):

Chapter 2 Linear Regression

30

Note that in the preceding dataset, we would have to solve for the optimal values of a

and b (cells G3 and G4) that minimize the overall error.

�Running a Simple Linear Regression in R
To understand the implementation details of the material covered in the preceding

sections, we’ll run the linear regression in R (available as “simple linear regression.R” in

github).

import file

data=read.csv("D:/Pro ML book/linear_reg_example.csv")

Build model

lm=glm(Weight~Age,data=data)

summarize model

summary(lm)

Chapter 2 Linear Regression

31

The function lm stands for linear model, and the general syntax is as follows:

lm(y~x,data=data)

where y is the dependent variable, x is the independent variable, and data is the dataset.

summary(lm) gives a summary of the model along with the variables that came in

significant, along with some automated tests. Let’s parse them one at a time:

�Residuals
Residual is nothing but the error value (the difference between actual and forecasted

value). The summary function automatically gives us the distribution of residuals. For

example, consider the residuals of the model on the dataset we trained.

Distribution of residuals using the model is calculated as follows:

#Extracting prediction

data$prediction=predict(lm,data)

Extracting residuals

data$residual = data$Weight - data$prediction

summarizing the residuals

summary(data$residual)

Chapter 2 Linear Regression

32

In the preceding code snippet, the predict function takes the model to implement

and the dataset to work on as inputs and produces the predictions as output.

Note T he output of the summary function is the various quartile values in the
residual column.

�Coefficients
The coefficients section of the output gives a summary version of the intercept and bias

that got derived. (Intercept) is the bias term (a), and Age is the independent variable:

•	 Estimate is the value of a and b each.

•	 Std error gives us a sense of variation in the values of a and b if we

draw random samples from the total population. Lower the ratio of

standard error to intercept, more stable is the model.

Let’s look at a way in which we can visualize/calculate the standard error values. The

following steps extract the standard error value:

	 1.	 Randomly sample 50% of the total dataset.

	 2.	 Fit a lm model on the sampled data.

	 3.	 Extract the coefficient of the independent variable for the model

fitted on sampled data.

	 4.	 Repeat the whole process over 100 iterations.

In code, the preceding would translate as follows:

Initialize an object that stores the various coefficient values

samp_coef=c()

Repeat the experiment 100 times

for(i in 1:100){

 # sample 50% of total data

 samp=sample(nrow(data),0.5*nrow(data))

 data2=data[samp,]

 # fit a model on the sampled data

 lm=lm(Weight~Age,data=data2)

Chapter 2 Linear Regression

33

 # extract the coefficient of independent variable and store it

 samp_coef=c(samp_coef,lm$coefficients['Age'])

}

sd(samp_coef)

Note that the lower the standard deviation, the closer the coefficient values of

sample data are to the original data. This indicates that the coefficient values are stable

regardless of the sample chosen.

t-value is the coefficient divided by the standard error. The higher the t-value, the

better the model stability.

Consider the following example:

The t-value corresponding to the variable Age would equal 0.47473/0.01435.

(Pr>|t|) gives us the p-value corresponding to t-value. The lower the p-value, the better

the model is. Let us look at the way in which we can derive p-value from t-value. A lookup

for t-value to p-value is available in the link here: http://www.socscistatistics.com/

pvalues/tdistribution.aspx

In our case, for the Age variable, t-value is 33.09.

Degrees of freedom = Number of rows in dataset – (Number of independent

variables in model + 1) = 22 – (1 +1) = 20

Note that the +1 in the preceding formula comes from including the intercept term.

We would check for a two-tailed hypothesis and input the value of t and the degrees

of freedom into the lookup table, and the output would be the corresponding p-value.

As a rule of thumb, if a variable has a p-value < 0.05, it is accepted as a significant

variable in predicting the dependent variable. Let’s look at the reason why.

If the p-value is high, it’s because the corresponding t-value is low, and that’s because

the standard error is high when compared to the estimate, which ultimately signifies that

samples drawn randomly from the population do not have similar coefficients.

In practice, we typically look at p-value as one of the guiding metrics in deciding

whether to include an independent variable in a model or not.

Chapter 2 Linear Regression

http://www.socscistatistics.com/pvalues/tdistribution.aspx
http://www.socscistatistics.com/pvalues/tdistribution.aspx

34

�SSE of Residuals (Residual Deviance)
The sum of squared error of residuals is calculated as follows:

SSE of residuals

data$prediction = predict(lm,data)

sum((data$prediction-data$Weight)^2)

Residual deviance signifies the amount of deviance that one can expect after building

the model. Ideally the residual deviance should be compared with null deviance—that

is, how much the deviance has decreased because of building a model.

�Null Deviance
A null deviance is the deviance expected when no independent variables are used in

building the model.

The best guess of prediction, when there are no independent variables, is the

average of the dependent variable itself. For example, if we say that, on average, there

are $1,000 in sales per day, the best guess someone can make about a future sales value

(when no other information is provided) is $1,000.

Thus, null deviance can be calculated as follows:

#Null deviance

data$prediction = mean(data$Weight)

sum((data$prediction-data$Weight)^2)

Note that, the prediction is just the mean of the dependent variable while calculating

the null deviance.

R Squared
R squared is a measure of correlation between forecasted and actual values. It is

calculated as follows:

	 1.	 Find the correlation between actual dependent variable and the

forecasted dependent variable.

	 2.	 Square the correlation obtained in step 1—that is the R squared

value.

Chapter 2 Linear Regression

35

R squared can also be calculated like this:

1- ()Residual deviance Null deviance/

Null deviance—the deviance when we don’t use any independent variable (but the

bias/constant) in predicting the dependent variable—is calculated as follows:

null deviance Y Y= ()å – � 2

where is the dependent variable and Y� is the average of the dependent variable.

Residual deviance is the actual deviance when we use the independent variables to

predict the dependent variable. It’s calculated as follows:

residual deviance Y y= ()å –
2

where Y is the actual dependent variable and y is the predicted value of the dependent

variable.

Essentially, R squared is high when residual deviance is much lower when compared

to the null deviance.

�F-statistic
F-statistic gives us a similar metric to R-squared. The way in which the F-statistic is

calculated is as follows:

F

SSE N SSE R

df df
SSE R

df

N R

R

=

()- ()
-
()

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

where SSE(N) is the null deviance, SSE(R) is the residual deviance, df N is the degrees of

freedom of null deviance, and df R is the degrees of freedom of residual deviance. The

higher the F-statistic, the better the model. The higher the reduction in deviance from

null deviance to residual deviance, the higher the predictability of using the independent

variables in the model will be.

Chapter 2 Linear Regression

36

�Running a Simple Linear Regression in Python
A linear regression can be run in Python using the following code (available as “Linear

regression Python code.ipynb” in github):

import relevant packages

pandas package is used to import data

statsmodels is used to invoke the functions that help in lm

import pandas as pd

import statsmodels.formula.api as smf

import dataset

data = pd.read_csv('D:/Pro ML book/Linear regression/linear_reg_example.csv')

run least squares regression

est = smf.ols(formula='Weight~Age',data=data)

est2=est.fit()

print(est2.summary())

The output of the preceding codes looks like this:

Note that the coefficients section outputs of R and Python are very similar. However,

this package has given us more metrics to study the level of prediction by default. We will

look into those in more detail in a later section.

Chapter 2 Linear Regression

37

�Common Pitfalls of Simple Linear Regression
The simple examples so far are to illustrate the basic workings of linear regression. Let’s

consider scenarios where it fails:

•	 When the dependent and independent variables are not linearly related

with each other throughout: As the age of a baby increases, the weight

increases, but the increase plateaus at a certain stage, after which the

two values are not linearly dependent any more. Another example

here would be the relation between age and height of an individual.

•	 When there is an outlier among the values within independent

variables: Say there is an extreme value (a manual entry error) within

a baby’s age. Because our objective is to minimize the overall error

while arriving at the a and b values of a simple linear regression,

an extreme value in the independent variables can influence the

parameters by quite a bit. You can see this work by changing the

value of any age value and calculating the values of a and b that

minimize the overall error. In this case, you would note that even

though the overall error is low for the given values of a and b, it

results in high error for a majority of other data points.

In order to avoid the first problem just mentioned, analysts typically see the relation

between the two variables and determine the cut-off (segments) at which we can apply

linear regression. For example, when predicting height based on age, there are distinct

periods: 0–1 year, 2–4 years, 5–10, 10–15, 15–20, and 20+ years. Each stage would have a

different slope for age-to-height relation. For example, growth rate in height is steep in

the 0–1 phase when compared to 2–4, which is better than 5-10 phase, and so on.

To solve for the second problem mentioned, analysts typically perform one of the

following tasks:

•	 Normalize outliers to the 99th percentile value: Normalizing to a

99th percentile value makes sure that abnormally high values do

not influence the outcome by a lot. For example, in the example

scenario from earlier, if age were mistyped as 1200 instead of 12,

it would have been normalized to 12 (which is among the highest

values in age column).

Chapter 2 Linear Regression

38

•	 Normalize but create a flag mentioning that the particular variable

was normalized: Sometimes there is good information within the

extreme values. For example, while forecasting for credit limit, let

us consider a scenario of nine people with an income of $500,000

and a tenth person with an income of $5,000,000 applying for a card,

and a credit limit of $5,000,000 is given for each. Let us assume that

the credit limit given to a person is the minimum of 10 times their

income or $5,000,000. Running a linear regression on this would

result in the slope being close to 10, but a number less than 10,

because one person got a credit limit of $5,000,000 even though their

income is $5,000,000. In such cases, if we have a flag that notes the

$5,000,000 income person is an outlier, the slope would have been

closer to 10.

Outlier flagging is a special case of multivariate regression, where there can be

multiple independent variables within our dataset.

�Multivariate Linear Regression
Multivariate regression, as its name suggests, involves multiple variables.

So far, in a simple linear regression, we have observed that the dependent variable

is predicted based on a single independent variable. In practice, multiple variables

commonly impact a dependent variable, which means multivariate is more common

than a simple linear regression.

The same ice cream sales problem mentioned in the first section could be translated

into a multivariate problem as follows:

Ice cream sales (the dependent variable) is dependent on the following:

•	 Temperature

•	 Weekend or not

•	 Price of ice cream

Chapter 2 Linear Regression

39

This problem can be translated into a mathematical model in the following way:

	 Y a w X w X= + +1 1 2 2* * 	

In that equation, w1 is the weight associated with the first independent variable, w2

is the weight (coefficient) associated with the second independent variable, and a is the

bias term.

The values of a, w1, and w2 will be solved similarly to how we solved for a and b in the

simple linear regression (the Solver in Excel).

The results and the interpretation of the summary of multivariate linear regression

remains the same as we saw for simple linear regression in the earlier section.

A sample interpretation of the above scenario could be as follows:

Sales of ice cream = 2 + 0.1 × Temperature + 0.2 × Weekend flag – 0.5

× Price of ice cream

The preceding equation is interpreted as follows: If temperature increases by 5 degrees

with every other parameter remaining constant (that is, on a given day and price remains

unchanged), sales of ice cream increases by $0.5.

Chapter 2 Linear Regression

40

�Working details of Multivariate Linear Regression
To see how multivariate linear regression is calculated, let’s go through the following

example (available as “linear_multi_reg_example.xlsx” in github):

For the preceding dataset - where Weight is the dependent variable and Age, New are

independent variables, we would initialize estimate and random coefficients as follows:

Chapter 2 Linear Regression

41

In this case, we would iterate through multiple values of a, b, and c—that is, cells H3,

H4, and H5 that minimize the values of overall squared error.

�Multivariate Linear Regression in R
Multivariate linear regression can be performed in R as follows (available as “Multivariate

linear regression.R” in github):

import file

data=read.csv("D:/Pro ML book/Linear regression/linear_multi_reg_example.csv")

Build model

lm=glm(Weight~Age+New,data=data)

summarize model

summary(lm)

Note that we have specified multiple variables for regression by using the + symbol

between the independent variables.

One interesting aspect we can note in the output would be that the New variable has a

p-value that is greater than 0.05, and thus is an insignificant variable.

Chapter 2 Linear Regression

42

Typically, when a p-value is high, we test whether variable transformation or capping

a variable would result in obtaining a low p-value. If none of the preceding techniques

work, we might be better off excluding such variables.

Other details we can see here are calculated in a way similar to that of simple linear

regression calculations in the previous sections.

�Multivariate Linear Regression in Python
Similar to R, Python would also have a minor addition within the formula section to

accommodate for multiple linear regression over simple linear regression:

import relevant packages

pandas package is used to import data

statsmodels is used to inoke the functions that help in lm

import pandas as pd

import statsmodels.formula.api as smf

import dataset

data = pd.read_csv('D:/Pro ML book/Linear regression/linear_multi_reg_

example.csv')

run least squares regression

est = smf.ols(formula='Weight~Age+New',data=data)

est2=est.fit()

print(est2.summary())

�Issue of Having a Non-significant Variable in the Model
A variable is non-significant when the p-value is high. p-value is typically high when the

standard error is high compared to coefficient value. When standard error is high, it is an

indication that there is a high variance within the multiple coefficients generated for multiple

samples. When we have a new dataset—that is, a test dataset (which is not seen by the model

while building the model)—the coefficients do not necessarily generalize for the new dataset.

This would result in a higher RMSE for the test dataset when the non-significant

variable is included in the model, and typically RMSE is lower when the non-significant

variable is not included in building the model.

Chapter 2 Linear Regression

43

�Issue of Multicollinearity
One of the major issues to take care of while building a multivariate model is when

the independent variables may be related to each other. This phenomenon is called

multicollinearity. For example, in the ice cream example, if ice cream prices increase by

20% on weekends, the two independent variables (price and weekend flag) are correlated

with each other. In such cases, one needs to be careful when interpreting the result—the

assumption that the rest of the variables remain constant does not hold true anymore.

For example, we cannot assume that the only variable that changes on a weekend is

the weekend flag anymore; we must also take into consideration that price also changes

on a weekend. The problem translates to, at a given temperature, if the day happens to

be a weekend, sales increase by 0.2 units as it is a weekend, but decrease by 0.1 as prices

are increased by 20% during a weekend—hence, the net effect of sales is +0.1 units on a

weekend.

�Mathematical Intuition of Multicollinearity
To get a glimpse of the issues involved in having variables that are correlated with each

other among independent variables, consider the following example (code available as

“issues with correlated independent variables.R” in github):

import dataset

data=read.csv("D:/Pro ML book/linear_reg_example.csv")

Creating a correlated variable

data$correlated_age = data$Age*0.5 + rnorm(nrow(data))*0.1

cor(data$Age,data$correlated_age)

Building a linear regression

lm=glm(Weight~Age+correlated_age,data=data)

summary(lm)

Note that, even though Age is a significant variable in predicting Weight in the earlier

examples, when a correlated variable is present in the dataset, Age turns out to be a non-

significant variable, because it has a high p-value.

Chapter 2 Linear Regression

44

The reason for high variance in the coefficients of Age and correlated_age by sample

of data is that, more often than not, although the Age and correlated_age variables

are correlated, the combination of age and correlated age (when treated as a single

variable—say, the average of the two variables) would have less variance in coefficients.

Given that we are using two variables, depending on the sample, Age might have

high coefficient, and correlated_age might have a low coefficient, and vice versa for

some other samples, resulting in a high variance in coefficients for both variables by the

sample chosen.

�Further Points to Consider in Multivariate Linear
Regression

•	 It is not advisable for a regression to have very high coefficients:

Although a regression can have high coefficients in some cases, in

general, a high value of a coefficient results in a huge swing in the

predicted value, even if the independent variable changes by 1 unit.

For example, if sales is a function of price, where sales = 1,000,000 –

100,000 x price, a unit change of price can drastically reduce sales. In

such cases, to avoid this problem, it is advisable to reduce the value

of sales by changing it to log(sales) instead of sales, or normalize sales

variable, or penalize the model for having high magnitude of weights

through L1 and L2 regularizations (More on L1/ L2 regularizations in

Chapter 7). This way, the a and b values in the equation remain small.

•	 A regression should be built on considerable number of observations:

In general, the higher the number of data points, more reliable the

model is. Moreover, the higher the number of independent variables,

the more data points to consider. If we have only two data points and

two independent variables, we can always come up with an equation

that is perfect for the two data points. But the generalization of the

equation built on two data points only is questionable. In practice, it

is advisable to have the number of data points be at least 100 times

the number of independent variables.

Chapter 2 Linear Regression

45

The problem of low number of rows, or high number of columns, or both, brings

us to the problem of adjusted R squared. As detailed earlier, the more independent

variables in an equation, the higher the chances are of fitting it closest to the dependent

variable, and thus a high R squared, even if the independent variables are non-

significant. Thus, there should be a way of penalizing for having a high number of

independent variables over a fixed set of data points. Adjusted R squared considers the

number of independent variables used in an equation and penalizes for having more

independent variables. The formula for adjusted R squared is as follows:

R
R n

n kadj
2

2

1
1 1

1
= -

-() -()
- -

é

ë
ê
ê

ù

û
ú
ú

where n is the number of data points in dataset and k is the number of independent

variables in the dataset.

The model with the least adjusted R squared is generally the better model to go with.

�Assumptions of Linear Regression
The assumptions of linear regression are as follows:

•	 The independent variables must be linearly related to dependent

variable: If the level of linearity changes over segment, a linear model

is built per segment.

•	 There should not be any outliers in values among independent

variables: If there are any outliers, they should either be capped or

a new variable needs to be created that flags the data points that are

outliers.

•	 Error values should be independent of each other: In a typical ordinary

least squares method, the error values are distributed on both sides

of the fitted line (that is, some predictions will be above actuals

and some will be below actuals), as shown in Figure 2-4. A linear

regression cannot have errors that are all on the same side, or that

follow a pattern where low values of independent variable have error

of one sign while high values of independent variable have error of

the opposite sign.

Chapter 2 Linear Regression

46

•	 Errors should be normally distributed: There should be only a few

data points that have high error. A majority of data points should have

low error, and a few data points should have positive and negative

error—that is, errors should be normally distributed (both to the left

of overforecasting and to the right of underforecasting), as shown in

Figure 2-6.

•	 Homoscedasticity: Errors cannot get larger as the value of an

independent variable increases. Error distribution should look more

like a cylinder than a cone in linear regression (see Figure 2-5). In a

practical scenario, we can think of the predicted value being on the

x-axis and the actual value being on the y-axis.

Figure 2-4.  Errors on both sides of the line

Figure 2-5.  Comparing error distributions

Chapter 2 Linear Regression

47

Note I n Figure 2-6, had we adjusted the bias (intercept) in the right-hand chart
slightly, more observations would now surround zero error.

�Summary
In this chapter, we have learned the following:

•	 The sum of squared error (SSE) is the optimization based on which

the coefficients in a linear regression are calculated.

•	 Multicollinearity is an issue when multiple independent variables are

correlated to each other.

•	 p-value is an indicator of the significance of a variable in predicting a

dependent variable.

•	 For a linear regression to work, the five assumptions - that is, linear

relation between dependent and independent variables, no outliers,

error value independence, homoscedasticity, normal distribution of

errors should be satisfied.

Figure 2-6.  Comparing curves

Chapter 2 Linear Regression

49
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_3

CHAPTER 3

Logistic Regression
In Chapter 2, we looked at ways in which a variable can be estimated based on an

independent variable. The dependent variables we were estimating were continuous

(sales of ice cream, weight of baby). However, in most cases, we need to be forecasting or

predicting for discrete variables—for example, whether a customer will churn or not, or

whether a match will be won or not. These are the events that do not have a lot of distinct

values. They have only a 1 or a 0 outcome—whether an event has happened or not.

Although a linear regression helps in forecasting the value (magnitude) of a variable,

it has limitations when predicting for variables that have just two distinct classes (1 or 0).

Logistic regression helps solve such problems, where there are a limited number of

distinct values of a dependent variable.

In this chapter, we will learn the following:

•	 The difference between linear and logistic regression

•	 Building a logistic regression in Excel, R, and Python

•	 Ways to measure the performance of a logistic regression model

�Why Does Linear Regression Fail for Discrete
Outcomes?
In order to understand this, let’s take a hypothetical case: predicting the result of a chess

game based on the difference between the Elo ratings of the players.

Difference in rating between black and white piece players White won?

200 0

–200 1

300 0

50

In the preceding simple example, if we apply linear regression, we will get the

following equation:

White won = 0.55 – 0.00214 × (Difference in rating between black and white)

Let’s use that formula to extrapolate on the preceding table:

Difference in rating between
black and white

White won? Prediction of linear
regression

200 0 0.11

–200 1 0.97

300 0 –0.1

As you can see, the difference of 300 resulted in a prediction of less than 0. Similarly

for a difference of –300, the prediction of linear regression will be beyond 1. However,

in this case, values beyond 0 or 1 don’t make sense, because a win is a discrete value

(either 0 or 1).

Hence the predictions should be bound to either 0 to 1 only—any prediction above 1

should be capped at 1 and any prediction below 0 should be floored at 0.

This translates to a fitted line, as shown in Figure 3-1.

Figure 3-1.  The fitted line

Chapter 3 Logistic Regression

51

Figure 3.1 shows the following major limitations of linear regression in predicting

discrete (binary in this case) variables:

•	 Linear regression assumes that the variables are linearly related:

However, as player strength difference increases, chances of win vary

exponentially.

•	 Linear regression does not give a chance of failure: In practice, even

if there is a difference of 500 points, there is an outside chance (let’s

say a 1% chance) that the inferior player might win. But if capped

using linear regression, there is no chance that the other player could

win. In general, linear regression does not tell us the probability of an

event happening after certain range.

•	 Linear regression assumes that the probability increases

proportionately as the independent variable increases: The probability

of win is high irrespective of whether the rating difference is +400 or

+500 (as the difference is significant). Similarly, the probability of win

is low, irrespective of whether the difference is –400 or –500.

�A More General Solution: Sigmoid Curve
As mentioned, the major problem with linear regression is that it assumes that all

relations are linear, although in practice very few are.

To solve for the limitations of linear regression, we will explore a curve called a

sigmoid curve. The curve looks like Figure 3-2.

Chapter 3 Logistic Regression

52

The features of the sigmoid curve are as follows:

•	 It varies between the values 0 and 1

•	 It plateaus after a certain threshold (after the value 3 or -3 in

Figure 3-2)

The sigmoid curve would help us solve the problems faced with linear

regression—that the probability of win is high irrespective of the difference in rating

between white and black piece player being +400 or +500 and that the probability of win

is low, irrespective of the difference being –400 or –500.

�Formalizing the Sigmoid Curve (Sigmoid Activation)
We’ve seen that sigmoid curve is in a better position to explain discrete phenomenon

than linear regression.

A sigmoid curve can be represented in a mathematical formula as follows:

S t
e t() =

+ -

1

1

Figure 3-2.  A sigmoid curve

Chapter 3 Logistic Regression

53

In that equation, the higher the value of t, lower the value of e t- ,hence S(t) is close to

1. And the lower the value of t (let’s say –100), the higher the value of e t- and the higher

the value of (1 + e t-), hence S(t) is very close to 0.

�From Sigmoid Curve to Logistic Regression
Linear regression assumes a linear relation between dependent and independent

variables. It is written as Y = a + b × X. Logistic regression moves away from the constraint

that all relations are linear by applying a sigmoid curve.

Logistic regression is mathematically modeled as follows:

Y
e a b X

=
+()- +()

1

1 *

We can see that logistic regression uses independent variables in the same way as

linear regression but passes them through a sigmoid activation so that the outputs are

bound between 0 and 1.

In case of the presence of multiple independent variables, the equation translates to

a multivariate linear regression passing through a sigmoid activation.

�Interpreting the Logistic Regression
Linear regression can be interpreted in a straightforward way: as the value of the independent

variable increases by 1 unit, the output (dependent variable) increases by b units.

To see how the output changes in a logistic regression, let’s look at an example. Let’s

assume that the logistic regression curve we’ve built (we’ll look at how to build a logistic

regression in upcoming sections) is as follows:

Y
e X

=
+()- +()

1

1 2 3*

•	 If X = 0, the value of Y = 1 / (1 + exp(–(2))) = 0.88.

•	 If X is increased by 1 unit (that is, X = 1), the value of Y is Y = 1 /

(1 + exp(–(2 + 3 × 1))) = 1 / (1 + exp(–(5))) = 0.99.

Chapter 3 Logistic Regression

54

As you see, the value of Y changed from 0.88 to 0.99 as X changed from 0 to 1.

Similarly, if X were –1, Y would have been at 0.27. If X were 0, Y would have been at 0.88.

There was a drastic change in Y from 0.27 to 0.88 when X went from –1 to 0 but not so

drastic when X moved from 0 to 1.

Thus the impact on Y of a unit change in X depends on the equation.

The value 0.88 when X = 0 can be interpreted as the probability. In other words, on

average in 88% of cases, the value of Y is 1 when X = 0.

�Working Details of Logistic Regression
To see how a logistic regression works, we’ll go through the same exercise we did to learn

linear regression in the last chapter: we’ll build a logistic regression equation in Excel.

For this exercise, we’ll use the Iris dataset. The challenge is to be able to predict whether

the species is Setosa or not, based on a few variables (sepal, petal length, and width).

The following dataset contains the independent and dependent variable values for

the exercise we are going to perform (available as “iris sample estimation.xlsx” dataset in

github):

Chapter 3 Logistic Regression

55

	 1.	 Initialize the weights of independent variables to random values

(let’s say 1 each).

	 2.	 Once the weights and the bias are initialized, we’ll estimate the

output value (the probability of the species being Setosa) by

applying sigmoid activation on the multivariate linear regression

of independent variables.

The next table contains information about the (a + b × X) part of

the sigmoid curve and ultimately the sigmoid activation value.

Chapter 3 Logistic Regression

56

The formula for how the values in the preceding table are

obtained is given in the following table:

The ifelse condition in the preceding sigmoid activation column

is used only because Excel has limitations in calculating any value

greater than exp(500)—hence the clipping.

�Estimating Error
In Chapter 2, we considered least squares (the squared difference) between actual and

forecasted value to estimate overall error. In logistic regression, we will use a different

error metric, called cross entropy.

Cross entropy is a measure of difference between two different distributions - actual

distribution and predicted distribution. In order to understand cross entropy, let’s see an

example: two parties contest in an election, where party A won. In one scenario, chances

of winning are 0.5 for each party—in other words, few conclusions can be drawn, and the

information is minimal. But if party A has an 80% chance of winning, and party B has a

20% chance of winning, we can draw a conclusion about the outcome of election, as the

distributions of actual and predicted values are closer.

The formula for cross entropy is as follows:

- + -() -()()ylog p y log p2 21 1

where y is the actual outcome of the event and p is the predicted outcome of the event.

Let’s plug the two election scenarios into that equation.

Chapter 3 Logistic Regression

57

�Scenario 1

In this scenario, the model predicted 0.5 probability of win for party A, and the actual

result of party A is 1:

Model prediction for party A Actual outcome for party A

0.5 1

The cross entropy of this model is the following:

- + -() -()() =1 0 5 1 1 1 0 5 12 2log log. .

�Scenario 2

In this scenario, the model predicted 0.8 probability of win for party A, and the actual

result of party A is 1:

Model prediction for party A Actual outcome for party A

0.8 1

The cross entropy of this model is the following:

- + -() -()() =1 0 8 1 1 1 0 8 0 322 2log log. . .

We can see that scenario 2 has lower cross entropy when compared to scenario 1.

�Least Squares Method and Assumption of Linearity
Given that in preceding example, when probability was 0.8, cross entropy was lower

compared to when probability was 0.5, could we not have used least squares difference

between predicted probability, actual value and proceeded in a similar way to how we

proceeded for linear regression? This section discusses choosing cross entropy error over

the least squares method.

A typical example of logistic regression is its application in predicting whether a

cancer is benign or malignant based on certain attributes.

Chapter 3 Logistic Regression

58

Let’s compare the two cost functions (least squares method and entropy cost) in

cases where the dependent variable (malignant cancer) is 1:

The formulas to obtain the preceding table are as follows:

Note that cross entropy penalizes heavily for high prediction errors compared to

squared error: lower error values have similar loss in both squared error and cross

entropy error, but for higher differences between actual and predicted values, cross

entropy penalizes more than the squared error method. Thus, we will stick to cross

entropy error as our error metric, preferring it to squared error for discrete variable

prediction.

Chapter 3 Logistic Regression

59

For the Setosa classification problem mentioned earlier, let’s use cross entropy error

instead of squared error, as follows:

Now that we have set up our problem, let’s vary the parameters in such a way that

overall error is minimized. This step again is performed by gradient descent, which can

be done by using the Solver functionality in Excel.

�Running a Logistic Regression in R
Now that we have some background in logistic regression, we’ll dive into the

implementation details of the same in R (available as “logistic regression.R” in github):

import dataset

data=read.csv("D:/Pro ML book/Logistic regression/iris_sample.csv")

build a logistic regression model

lm=glm(Setosa~.,data=data,family=binomial(logit))

summarize the model

summary(lm)

Chapter 3 Logistic Regression

60

The second line in the preceding code specifies that we will be using the glm

(generalized linear models), in which binomial family is considered. Note that by

specifying “~.” we’re making sure that all variables are being considered as independent

variables.

summary of the logistic model gives a high-level summary similar to the way we got

summary results in linear regression:

Chapter 3 Logistic Regression

61

�Running a Logistic Regression in Python
Now let’s see how a logistic regression equation is built in Python (available as “logistic

regression.ipynb” in github):

import relevant packages

pandas package is used to import data

statsmodels is used to invoke the functions that help in lm

import pandas as pd

import statsmodels.formula.api as smf

Once we import the package, we use the logit method in case of logistic regression,

as follows:

import dataset

data = pd.read_csv('D:/Pro ML book/Logistic regression/iris_sample.csv')

run regression

est = smf.logit(formula='Setosa~Slength+Swidth+Plength+Pwidth',data=data)

est2=est.fit()

print(est2.summary())

The summary function in the preceding code gives a summary of the model, similar to

the way in which we obtained summary results in linear regression.

�Identifying the Measure of Interest
In linear regression, we have looked at root mean squared error (RMSE) as a way to

measure error.

In logistic regression, the way we measure the performance of the model is different

from how we measured it in linear regression. Let’s explore why linear regression error

metrics cannot be used in logistic regression.

We’ll look at building a model to predict a fraudulent transaction. Let’s say 1% of the

total transactions are fraudulent transactions. We want to predict whether a transaction

is likely to be fraud. In this particular case, we use logistic regression to predict the

dependent variable fraud transaction by using a set of independent variables.

Chapter 3 Logistic Regression

62

Why can’t we use an accuracy measure? Given that only 1% of all the transactions

are fraud, let’s consider a scenario where all our predictions are 0. In this scenario, our

model has an accuracy of 99%. But the model is not at all useful in reducing fraudulent

transactions because it predicts that every transaction is not a fraud.

In a typical real-world scenario, we would build a model that predicts whether

the transaction is likely to be a fraud or not, and only the transactions that have a high

likelihood of fraud are flagged. The transactions that are flagged are then sent for manual

review to the operations team, resulting in a lower fraudulent transaction rate.

Although we are reducing the fraud transaction rate by getting the high-likelihood

transactions reviewed by the operations team, we are incurring an additional cost of

manpower, because humans are required to review the transaction.

A fraud transaction prediction model can help us narrow the number of transactions

that need to be reviewed by a human (operations team). Let’s say in total there are a total

of 1,000,000 transactions. Of those million transactions, 1% are fraudulent—so, a total of

10,000 transactions are fraudulent.

In this particular case, if there were no model, on average 1 in 100 transactions is

fraudulent. The performance of the random guess model is shown in the following table:

Chapter 3 Logistic Regression

63

If we were to plot that data, it would look something like Figure 3-3.

Now let’s look at how building a model can help. We’ll create a simple example to

come up with an error measure:

	 1.	 Take the dataset as input and compute the probabilities of each

transaction id:

Transaction id Actual fraud Probability of fraud

1 1 0.56

2 0 0.7

3 1 0.39

4 1 0.55

5 1 0.03

6 0 0.84

7 0 0.05

8 0 0.46

9 0 0.86

10 1 0.11

Figure 3-3.  Cumulative frauds captured by random guess model

Chapter 3 Logistic Regression

64

	 2.	 Sort the dataset by probability of fraud from the highest to least. The

intuition is that the model performs well when there are more 1s of

“Actual fraud” at the top of dataset after sorting in descending order

by probability:

Transaction id Actual fraud Probability of fraud

9 0 0.86

6 0 0.84

2 0 0.7

1 1 0.56

4 1 0.55

8 0 0.46

3 1 0.39

10 1 0.11

7 0 0.05

5 1 0.03

	 3.	 Calculate the cumulative number of transactions captured from

the sorted table:

Transaction id Actual fraud
Probability of
fraud

Cumulative
transactions reviewed

Cumulative
frauds captured

9 0 0.86 1 0

6 0 0.84 2 0

2 0 0.7 3 0
1 1 0.56 4 1

4 1 0.55 5 2

8 0 0.46 6 2

3 1 0.39 7 3

10 1 0.11 8 4

7 0 0.05 9 4

5 1 0.03 10 5

Chapter 3 Logistic Regression

65

In this scenario, given that 5 out of 10 transactions are fraudulent, on average 1 in 2

transactions are fraudulent. So, cumulative frauds captured by using the model versus by

using a random guess would be as follows:

Transaction id Actual fraud

Cumulative
transactions
reviewed

Cumulative
frauds
captured

Cumulative
frauds captured
by random guess

9 0 1 0 0.5

6 0 2 0 1

2 0 3 0 1.5

1 1 4 1 2

4 1 5 2 2.5

8 0 6 2 3

3 1 7 3 3.5

10 1 8 4 4

7 0 9 4 4.5

5 1 10 5 5

Chapter 3 Logistic Regression

66

We can plot the cumulative frauds captured by the random model and also the

logistic regression model, as shown in Figure 3-4.

In this particular case, for the example laid out above, random guess turned out to be

better than the logistic regression model—in the first few guesses, a random guess makes

better predictions than the model.

Now, let’s get back to the previous fraudulent transaction example scenario, where

let’s say the outcome of model looks as follows:

Cumulative frauds captured

No. of transactions
reviewed

Cumulative frauds captured by
random guess

Cumulative frauds captued
by model

- - 0

100,000 1,000 4000

200,000 2,000 6000

300,000 3,000 7600

400,000 4,000 8100

500,000 5,000 8500

Figure 3-4.  Comparing the models

(continued)

Chapter 3 Logistic Regression

67

Cumulative frauds captured

No. of transactions
reviewed

Cumulative frauds captured by
random guess

Cumulative frauds captued
by model

600,000 6,000 8850

700,000 7,000 9150

800,000 8,000 9450

900,000 9,000 9750

1,000,000 10,000 10000

We lay out the chart between cumulative frauds captured by random guess versus

the cumulative frauds captured by the model, as shown in Figure 3-5.

Note that the higher the area between the random guess line and the model line,

the better the model performance is. The metric that measures the area covered under

model line is called the area under the curve (AUC).

Thus, the AUC metric is a better metric to helps us evaluate the performance of a

logistic regression model.

Figure 3-5.  Comparing the two approaches

Chapter 3 Logistic Regression

68

In practice, the output of rare event modeling looks as follows, when the scored

dataset is divided into ten buckets (groups) based on probability (The code is provided

as “credit default prediction.ipynb” in github):

prediction_rank in the preceding table represents the decile of probability—that

is, after each transaction is rank ordered by probability and then grouped into buckets

based on the decile it belongs to. Note that the third column (total_observations) has

an equal number of observations in each decile.

The second column—prediction avg_default—represents the average probability

of default obtained by the model we built. The fourth column—SeriousDlqin2yrs

avg_default—represents the average actual default in each bucket. And the final

column represents the actual number of defaults captured in each bucket.

Note that in an ideal scenario, all the defaults should be captured in the highest-

probability buckets. Also note that, in the preceding table, the model captured

considerable number of frauds in the highest probability bucket.

�Common Pitfalls
This section talks about some the common pitfalls the analyst should be careful about

while building a classification model:

Chapter 3 Logistic Regression

69

�Time Between Prediction and the Event Happening
Let’s look at a case study: predicting the default of a customer.

We should say that it is useless to predict today that someone is likely to default

on their credit card tomorrow. There should be some time gap between the time of

predicting that someone would default and the event actually happening. The reason is

that the operations team would take some time to intervene and help reduce the number

of default transactions.

�Outliers in Independent variables
Similar to how outliers in the independent variables impact the overall error in linear

regression, it is better to cap outliers so that they do not impact the regression very much

in logistic regression. Note that, unlike linear regression, logistic regression would not

have a huge outlier output when one has an outlier input; in logistic regression, the

output is always restricted between 0 and 1 and the corresponding cross entropy loss

associated with it.

But the problem with having outliers would still result in a high cross entropy loss,

and so it’s a better idea to cap outliers.

�Summary
In this chapter, we went through the following:

•	 Logistic regression is used in predicting binary (categorical) events,

and linear regression is used to forecast continuous events.

•	 Logistic regression is an extension of linear regression, where the

linear equation is passed through a sigmoid activation function.

•	 One of the major loss metrics used in logistic regression is the cross

entropy error.

•	 A sigmoid curve helps in bounding the output of a value between 0 to

1 and thus in estimating the probability associated with an event.

•	 AUC metric is a better measure of evaluating a logistic regression model.

Chapter 3 Logistic Regression

71
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_4

CHAPTER 4

Decision Tree
In the previous chapters, we’ve considered regression-based algorithms that optimize

for a certain metric by varying coefficients or weights. A decision tree forms the basis

of tree-based algorithms that help identify the rules to classify or forecast an event or

variable we are interested in. Moreover, unlike linear or logistic regression, which are

optimized for either regression or classification, decision trees are able to perform both.

The primary advantage of decision trees comes from the fact that they are business

user friendly—that is, the output of a decision tree is intuitive and easily explainable to

the business user.

In this chapter we will learn the following:

•	 How a decision tree works in classification and regression exercise

•	 How a decision tree works when the independent variable is

continuous or discrete

•	 Various techniques involved in coming up with an optimal

decision tree

•	 Impact of various hyper-parameters on a decision tree

•	 How to implement a decision tree in Excel, Python, and R

A decision tree is an algorithm that helps in classifying an event or predicting the

output values of a variable. You can visualize decision trees as a set of rules based on

which a different outcome can be expected. For example, look at Figure 4-1.

72

In Figure 4-1, we can see that a dataset (the table on the left) uses both a continuous

variable (Taxable Income) and categorical variables (Refund, Marital Status) as

independent variables to classify whether someone was cheating on their taxes or not

(categorical dependent variable).

The tree on the right has a few components: root node, decision nodes, and leaf node

(I talk more about these in next section) to classify whether someone would cheat (Yes/No).

From the tree shown, the user can derive the following rules:

	 1.	 Someone with Marital Status of Yes is generally not a cheater.

	 2.	 Someone who is divorced but also got a refund earlier also does

not cheat.

	 3.	 Someone who is divorced, did not get a refund, but has a taxable

income of less than 80K is also not a cheater.

	 4.	 Those who do not belong to any of the preceding categories are

cheaters in this particular dataset.

Similar to regression, where we derived an equation (for example, to predict credit

default based on customer characteristics) a decision tree also works to predict or

forecast an event based on customer characteristics (for example, marital status, refund,

and taxable income in the previous example).

Figure 4-1.  An example decision tree

Chapter 4 Decision Tree

73

When a new customer applies for a credit card, the rules engine (a decision tree

running on the back end) would check whether the customer would fall in the risky

bucket or the non-risky bucket after passing through all the rules of the decision tree.

After passing through the rules, the system would approve or deny the credit card based

on the bucket a user falls into.

Obvious advantages of decision trees are the intuitive output and visualization that

help a business user make a decision. Decision trees are also less sensitive to outliers in

cases of classification than a typical regression technique. Moreover, a decision tree is

one of the simpler algorithms in terms of building a model, interpreting a model, or even

implementing a model.

�Components of a Decision Tree
All the components of a decision tree are shown in Figure 4-2.

Splitting

CB

A

Branch/Sub-Tree

Note:- A is parent node of B and C.

Decision Node

ROOT Node

Decision NodeTerminal Node

Terminal Node Terminal Node

Terminal Node Terminal Node

Decision Node

Figure 4-2.  Components of a decision tree

The components include the following:

•	 Root node: This node represents an entire population or sample and

gets divided into two or more homogeneous sets.

•	 Splitting: A process of dividing a node into two or more sub-nodes

based on a certain rule.

Chapter 4 Decision Tree

74

•	 Decision node: When a sub-node splits into further sub-nodes, it is

called a decision node.

•	 Leaf/Terminal node: The final node in a decision tree.

•	 Pruning: The process of removing sub-nodes from a decision node—

the opposite of splitting.

•	 Branch/Sub-tree: A subsection of an entire tree is called a branch or

sub-tree.

•	 Parent and child node: A node that is divided into sub-nodes is called

the parent node of those sub-nodes, and the sub-nodes are the

children of the parent node.

�Classification Decision Tree When There Are
Multiple Discrete Independent Variables
The criterion for splitting at a root node varies by the type of variable we are predicting,

depending on whether the dependent variable is continuous or categorical. In this

section, we’ll look at how splitting happens from the root node to decision nodes by way

of an example. In the example, we are trying to predict employee salary (emp_sal) based

on a few independent variables (education, marital status, race, and sex).

Here is the dataset (available as “categorical dependent and independent variables.

xlsx” in github):

Chapter 4 Decision Tree

75

Here, Emp_sal is the dependent variable, and the rest of the variables are

independent variables.

When splitting the root node (the original dataset), you first need to determine

the variable based on which the first split has to be made—for example, whether

you will split based on education, marital status, race, or sex. To come up with a way

of shortlisting one independent variable over the rest, we use the information gain

criterion.

�Information Gain
Information gain is best understood by relating it to uncertainty. Let’s assume that there

are two parties contesting in elections being conducted in two different states. In one

state the chance of a win is 50:50 for each party, whereas in another state the chance of a

win for party A is 90% and for party B it’s 10%.

If we were to predict the outcome of elections, the latter state is much easier to predict

than the former because uncertainty is the least (the probability of a win for party A is

90%) in that state. Thus, information gain is a measure of uncertainty after splitting a node.

�Calculating Uncertainty: Entropy
Uncertainty, also called entropy, is measured by the formula

	 - +()plog p qlog q2 2 	

where p is the probability of event 1 happening, and q is the probability of event

2 happening.

Let’s consider the win scenarios for the two parties:

Scenario Party A uncertainty Party B uncertainty Overall uncertainty

Equal chances of win −0.5log2(0.5) = 0.5 −0.5log2(0.5) = 0.5 0.5 + 0.5 =1

90% chances of win for

party A

−0.9log2(0.9) = 0.1368 −0.1log2(0.1) = 0.3321 0.1368 + 0.3321 = 0.47

Chapter 4 Decision Tree

76

We see that based on the previous equation, the second scenario has less overall

uncertainty than the first, because the second scenario has a 90% chance of party A’s win.

�Calculating Information Gain
We can visualize the root node as the place where maximum uncertainty exists. As we

intelligently split further, the uncertainty decreases. Thus, the choice of split (the variable

the split should be based on) depends on which variables decrease uncertainty the most.

To see how the calculation happens, let’s build a decision tree based on our dataset.

�Uncertainty in the Original Dataset
In the original dataset, nine observations have a salary <= 50K, while five have a salary > 50K:

Let’s calculate the values of p and q so that we calculate the overall uncertainty:

The formulas for p and q are as follows:

Thus, the overall uncertainty in the root node is as follows:

Uncertainty in <=50K Uncertainty in >50K Overall uncertainty

–0.64 × log2(0.64) = 0.41 −0.36 × log2(0.36) = 0.53 0.41 + 0.53 = 0.94

Chapter 4 Decision Tree

77

The overall uncertainty in the root node is 0.94.

To see the process of shortlisting variables in order to complete the first step, we’ll

figure out the amount by which overall uncertainty decreases if we consider all four

independent variables for the first split. We’ll consider education for the first split (we’ll

figure out the improvement in uncertainty), next we’ll consider marital status the same

way, then race, and finally the sex of the employee. The variable that reduces uncertainty

the most will be the variable we should use for the first split.

�Measuring the Improvement in Uncertainty
To see how the improvement in uncertainty is calculated, consider the following

example. Let’s consider whether we want to split our variable by sex of employee:

We calculate the uncertainty –(plog2p+qlog2q) of each distinct value of each variable.

The table for the uncertainty calculation for one of the variables (Sex) is as follows:

Sex P Q –(plog2p) –(qlog2q) –(plog2p+qlog2q) Weighted uncertainty

Female 4/5 1/5 0.257 0.46 0.72 0.72 × 5/14 = 0.257

Male 5/9 4/9 0.471 0.52 0.99 0.99 × 9/14 = 0.637

Overall 0.894

A similar calculation to measure the overall uncertainty of all the variables would be

done. The information gain if we split the root node by the variable Sex is as follows:

(Original entropy – Entropy if we split by the variable Sex) = 0.94 – 0.894 = 0.046

Based on the overall uncertainty, the variable that maximizes the information gain

(the reduction in uncertainty) would be chosen for splitting the tree.

Chapter 4 Decision Tree

78

In our example, variable-wise, overall uncertainty is as follows:

Variable Overall uncertainty
Reduction in uncertainty from
root node

Education 0.679 0.94 – 0.679 = 0.261

Marital status 0.803 0.94 – 0.803 = 0.137

Race 0.803 0.94 – 0.803 = 0.137

Sex 0.894 0.94 – 0.894 = 0.046

From that we can observe that the splitting decision should be based on Education

and not any other variable, because it is the variable that reduces the overall uncertainty

by the most (from 0.94 to 0.679).

Once a decision about the split has been made, the next step (in the case of variables

that have more than two distinct values—education in our example) would be to

determine which unique value should go to the right decision node and which unique

value should go to the left decision node after the root node.

Let’s look at all the distinct values of education, because it’s the variable that reduces

uncertainty the most:

Distinct value % of obs. <=50K

11th 100%

9th 100%

Assoc-acdm 100%

Bachelors 67%

HS-grad 50%

Masters 50%

Some-college 0%

Overall 64%

Chapter 4 Decision Tree

79

�Which Distinct Values Go to the Left and Right Nodes
In the preceding section, we concluded that education is the variable on which the first

split in the tree would be made. The next decision to be made is which distinct values of

education go to the left node and which distinct values go to the right node.

The Gini impurity metric comes in handy in such scenario.

�Gini Impurity

Gini impurity refers to the extent of inequality within a node. If a node has all values

that belong to one class over the other, it is the purest possible node. If a node has 50%

observations of one class and the rest of another class, it is the most impure form of a

node.

Gini impurity is defined as 1 2 2- +()p q where p and q are the probabilities

associated with each class.

Consider the following scenario:

P Q Gini index value

0 1 1 – 02 – 12 = 0

1 0 1 – 12 – 02 =0

0.5 0.5 1 – 0.52 – 0.52 = 0.5

Let’s use Gini impurity for the employee salary prediction problem: From the

information gain calculation in the previous section, we observed that Education is the

variable used as the first split.

To figure out which distinct values go to the left node and which go to the right node,

let’s go through the following calculation:

Chapter 4 Decision Tree

80

of

 o
bs

er
va

tio
ns

Le
ft

no
de

Ri
gh

t n
od

e
Im

pu
rit

y

of
 o

bs

<
=

50
K

>
50

K
Gr

an
d

To
ta

l
p

q
p

q
Le

ft
no

de
Ri

gh
t

no
de

Le
ft

no
de

Ri
gh

t
no

de
W

ei
gh

te
d

im
pu

rit
y

11
th

1
1

10
0%

0%
62

%
38

%
-

0.
47

1
13

0.
44

9t
h

1
1

10
0%

0%
58

%
42

%
-

0.
49

2
12

0.
42

As
so

c-
ac

dm
1

1
10

0%
0%

55
%

45
%

-
0.

50
3

11
0.

39

Ba
ch

el
or

s
4

2
6

78
%

22
%

40
%

60
%

0.
35

0.
48

9
5

0.
39

HS
-g

ra
d

1
1

2
73

%
27

%
33

%
67

%
0.

40
0.

44
11

3
0.

41

M
as

te
rs

1
1

2
69

%
31

%
0%

10
0%

0.
43

-
13

1
0.

40

So
m

e-
co

lle
ge

1
1

Chapter 4 Decision Tree

81

We can understand the preceding table through the following steps:

	 1.	 Rank order the distinct values by the percentage of observations

that belong to a certain class.

This would result in the distinct values being reordered as follows:

Distinct value % of obs <= 50K

11th 100%

9th 100%

Assoc-acdm 100%

Bachelors 67%

HS-grad 50%

Masters 50%

Some-college 0%

	 2.	 In the first step, let’s assume that only the distinct values that

correspond to 11th go to the left node, and the rest of the distinct

observations correspond to the right node.

Impurity in the left node is 0 because it has only one observation,

and there will be some impurity in the right node because eight

observations belong to one class and five belong to another class.

	 3.	 Overall impurity is calculated as follows:

((Impurity in left node × # of obs. in left node) + (Impurity in right

node × # of obs. in right node)) / (total no. of obs.)

	 4.	 We repeat steps 2 and 3 but this time we include both 11th and

9th in the left node and the rest of the distinct values in the right

node.

	 5.	 The process is repeated until all the distinct values are considered

in the left node.

	 6.	 The combination that has the least overall weighted impurity is the

combination that will be chosen in the left node and right node.

Chapter 4 Decision Tree

82

In our example, the combination of {11th,9th,Assoc-acdm} goes to the left node and

the rest go to the right node as this combination has the least weighted impurity.

�Splitting Sub-nodes Further

From the analysis so far, we have split our original data into the following:

Now there is an opportunity to split the right node further. Let us look into how the

next split decision is. The data that is left to split is all the data points that belong to the

right node, which are as follows:

From the preceding data, we’ll perform the following steps:

	 1.	 Use the information gain metric to identify the variable that

should be used to split the data.

	 2.	 Use the Gini index to figure out the distinct values within that

variable that should belong to the left node and the ones that

should belong to the right node.

Chapter 4 Decision Tree

83

The overall impurity in the parent node for the preceding dataset

is as follows:

Now that the overall impurity is ~0.99, let’s look at the variable that reduces the

overall impurity by the most. The steps we would go through would be the same as

in the previous iteration on the overall dataset. Note that the only difference between

the current version and the previous one is that in the root node the total dataset is

considered, whereas in the sub-node only a subset of the data is considered.

Let’s calculate the information gain obtained by each variable separately (similar

to the way we calculated in the previous section). The overall impurity calculation with

marital status as the variable would be as follows:

In a similar manner, impurity with respect to employee race would be as follows:

Chapter 4 Decision Tree

84

Impurity with respect to sex would be calculated as follows:

Impurity with respect to employee education would be calculated as follows:

From the above, we notice that employee education as a variable is the one that

reduces impurity the most from the parent node—that is, the highest information gain is

obtained from the employee education variable.

Notice that, coincidentally, the same variable happened to split the dataset twice,

both in the parent node and in the sub-node. This pattern might not be repeated on a

different dataset.

�When Does the Splitting Process Stop?
Theoretically, the process of splitting can happen until all the terminal (leaf/last) nodes

of a decision tree are pure (they all belong to one class or the other).

However, the disadvantage of such process is that it overfits the data and hence

might not be generalizable. Thus, a decision tree is a trade-off between the complexity of

the tree (the number of terminal nodes in a tree) and its accuracy. With a lot of terminal

nodes, the accuracy might be high on training data, but the accuracy on validation data

might not be high.

This brings us to the concept of the complexity parameter of a tree and out-of-bag

validation. As the complexity of a tree increases—that is, the tree’s depth gets higher—

the accuracy on the training dataset would keep increasing, but the accuracy on the test

dataset might start getting lower beyond certain depth of the tree.

The splitting process should stop at the point where the validation dataset accuracy

does not improve any further.

Chapter 4 Decision Tree

85

�Classification Decision Tree for Continuous
Independent Variables
So far, we have considered that both the independent and dependent variables are

categorical. But in practice we might be working on continuous variables too, as

independent variables. This section talks about how to build a decision tree for a

continuous variable.

We will look at the ways in which we can build a decision tree for a categorical

dependent variable and continuous independent variables in the next sections using

the following dataset (“categorical dependent continuous independent variable.xlsx” in

github):

In this dataset, we’ll try to predict whether someone would survive or not based on

the Age variable.

Chapter 4 Decision Tree

86

The dependent variable is Survived, and the independent variable is Age.

	 1.	 Sort the dataset by increasing independent variable. The dataset

thus transforms into the following:

	 2.	 Test out multiple rules. For example, we can test the impurity in

both left and right nodes when Age is less than 7, less than 10 and

so on until Age less than 94.

	 3.	 Calculate Gini impurity:

Chapter 4 Decision Tree

87

of

 o
bs

Le
ft

no
de

Ri
gh

t n
od

e

Ov
er

al
l

im
pu

rt
iy

Su
rv

iv
ed

Co
un

t o
f

Su
rv

iv
ed

2
Le

ft
no

de
Ri

gh
t

no
de

p
q

Im
pu

rit
y

p
q

Im
pu

rit
y

3
1

1
11

7
1

1
2

10
10

0%
0%

-
40

%
60

%
0.

48
0.

44

10
1

1
3

9
10

0%
0%

-
33

%
67

%
0.

44
0.

36

15
1

1
4

8
10

0%
0%

-
25

%
75

%
0.

38
0.

27

16
1

1
5

7
10

0%
0%

-
14

%
86

%
0.

24
0.

16

20
1

1
6

6
10

0%
0%

-
0%

10
0%

-
-

26
0

1
7

5
86

%
14

%
0.

24
0%

10
0%

-
0.

13

28
0

1
8

4
75

%
25

%
0.

38
0%

10
0%

-
0.

24

34
0

1
9

3
67

%
33

%
0.

44
0%

10
0%

-
0.

32

62
0

1
10

2
60

%
40

%
0.

48
0%

10
0%

-
0.

39

76
0

1
11

1
55

%
45

%
0.

50
0%

10
0%

-
0.

45

94
0

1
12

Chapter 4 Decision Tree

88

From the preceding table, we should notice that Gini impurity is

the least when the independent variable value is less than 26.

Thus we will choose Age less than 26 as the rule that splits the

original dataset.

Note that both Age > 20 as well as Age < 26 split the dataset to the

same extent of error rate. In such a scenario, we need to come up

with a way to choose the one rule between the two rules. We’ll

take the average of both rules, so Age <= 23 would be the rule that

is midway between the two rules and hence a better rule than

either of the two.

�Classification Decision Tree When There Are
Multiple Independent Variables
To see how a decision tree works when multiple independent variables are continuous,

let’s go through the following dataset (“categorical dependent multiple continuous

independent variables.xlsx” in github):

Survived Age Unknown

1 30 79

1 7 67

1 100 53

1 15 33

1 16 32

1 20 5

0 26 14

0 28 16

0 34 70

0 62 35

0 76 66

0 94 22

Chapter 4 Decision Tree

89

So far, we have performed calculations in the following order:

	 1.	 Identify the variable that should be used for the split first by using

information gain.

	 2.	 Once a variable is identified, in the case of discrete variables,

identify the unique values that should belong to the left node and

the right node.

	 3.	 In the case of continuous variables, test out all the rules and

shortlist the rule that results in minimal overall impurity.

In this case, we’ll reverse the scenario—that is, we’ll first find out the rule of splitting

to the left node and right node, if we were to split on any of the variables. Once the left

and right nodes are figured, we’ll calculate the information gain obtained by the split and

thus shortlist the variable that should be slitting the overall dataset.

First, we’ll calculate the optimal split for both variables. We’ll start with Age as the

first variable:

Age Survived

7 1

15 1

16 1

20 1

26 0

28 0

30 1

34 0

62 0

76 0

94 0

100 1

Chapter 4 Decision Tree

90

of

 o
bs

Le
ft

no
de

Ri
gh

t n
od

e

Ag
e

Su
rv

iv
ed

Co
un

t o
f

Su
rv

iv
ed

2
Le

ft
no

de
Ri

gh
t

no
de

p
q

Im
pu

rit
y

p
q

Im
pu

rit
y

Ov
er

al
l

im
pu

rt
iy

7
1

1
11

15
1

1
2

10
10

0%
0%

-
40

%
60

%
0.

48
0.

40

16
1

1
3

9
10

0%
0%

-
33

%
67

%
0.

44
0.

33

20
1

1
4

8
10

0%
0%

-
25

%
75

%
0.

38
0.

25

26
0

1
5

7
80

%
20

%
0.

32
29

%
71

%
0.

41
0.

37

28
0

1
6

6
67

%
33

%
0.

44
33

%
67

%
0.

44
0.

44

30
1

1
7

5
71

%
29

%
0.

41
20

%
80

%
0.

32
0.

37

34
0

1
8

4
63

%
38

%
0.

47
25

%
75

%
0.

38
0.

44

62
0

1
9

3
56

%
44

%
0.

49
33

%
67

%
0.

44
0.

48

76
0

1
10

2
50

%
50

%
0.

50
50

%
50

%
0.

50
0.

50

94
0

1
11

1
45

%
55

%
0.

50
10

0%
0%

-
0.

45

10
0

1
1

12

Chapter 4 Decision Tree

91

From the data, we can see that the rule derived should be Age <= 20 or Age >= 26. So

again, we’ll go with the middle value: Age <= 23.

Now that we’ve derived the rule, let’s calculate the information gain corresponding

to the split. Before calculating the information gain, we’ll calculate the entropy in the

original dataset:

Given that both 0 and 1 are 6 in number (50% probability for each), the overall

entropy comes out to be 1.

From the following, we notice that entropy reduces to 0.54 from a value of 1 if we

split the dataset first using the Age variable:

Survived

0 1 Grand Total p q -(plogp+qlogq) wegihted entropy

Age<=23 4 4 0 1 0 0

Age>23 6 2 8 0.75 0.25 0.811278 0.540852

Grand Total 6 6 12 Overall

entropy

0.540852

Similarly, had we split the dataset by the column named Unknown, the minima occurs

when the value of Unknown <= 22, as follows:

Chapter 4 Decision Tree

92

of

 o
bs

Le
ft

no
de

Ri
gh

t n
od

e

Un
kn

w
on

Su
rv

iv
ed

Co
un

t o
f

Su
rv

iv
ed

2
Le

ft
no

de
Ri

gh
t

no
de

p
q

Im
pu

rit
y

p
q

Im
pu

rit
y

Ov
er

al
l

im
pu

rt
iy

 5
1

1
11

14
0

1
2

10
50

%
50

%
0.

50
50

%
50

%
0.

50
0.

50

16
0

1
3

9
33

%
67

%
0.

44
56

%
44

%
0.

49
0.

48

22
0

1
4

8
25

%
75

%
0.

38
63

%
38

%
0.

47
0.

44

32
1

1
5

7
40

%
60

%
0.

48
57

%
43

%
0.

49
0.

49

33
1

1
6

6
50

%
50

%
0.

50
50

%
50

%
0.

50
0.

50

35
0

1
7

5
43

%
57

%
0.

49
60

%
40

%
0.

48
0.

49

53
1

1
8

4
50

%
50

%
0.

50
50

%
50

%
0.

50
0.

50

66
0

1
9

3
44

%
56

%
0.

49
67

%
33

%
0.

44
0.

48

67
1

1
10

2
50

%
50

%
0.

50
50

%
50

%
0.

50
0.

50

70
0

1
11

1
45

%
55

%
0.

50
10

0%
0%

-
0.

45

79
1

1
12

Chapter 4 Decision Tree

93

Thus, all values less than or equal to 22 belong to one group (left node), and the

rest belong to another group (right node). Note that, practically we would go with a mid

value between 22 and 32.

Overall entropy in case of splitting by the Unknown variable would be as follows:

Survived

0 1 Grand Total p q

-(plogp+qlogq)

wegihted entropy

Unknown<=22 3 1 4 0.75 0.25 0.81 0.27

Unknown>22 3 5 8 0.375 0.625 0.95 0.64

Grand Total 6 6 12 Overall

entropy

0.91

From the data, we see that information gain, due to splitting by the Unknown variable,

is only 0.09. Hence, the split would be based on Age, not Unknown.

�Classification Decision Tree When There Are
Continuous and Discrete Independent Variables
We’ve seen ways of building classification decision tree when all independent variables

are continuous and when all independent variables are discrete.

If some independent variables are continuous and the rest are discrete, the way we

would build a decision tree is very similar to the way we built in the previous sections:

	 1.	 For the continuous independent variables, we calculate the

optimal splitting point.

	 2.	 Once the optimal splitting point is calculated, we calculate the

information gain associated with it.

	 3.	 For the discrete variable, we calculate the Gini impurity to

figure out the grouping of distinct values within the respective

independent variable.

	 4.	 Whichever is the variable that maximizes information gain is the

variable that splits the decision tree first.

	 5.	 We continue with the preceding steps in further building the sub-

nodes of the tree.

Chapter 4 Decision Tree

94

�What If the Response Variable Is Continuous?
If the response variable is continuous, the steps we went through in building a decision

tree in the previous section remain the same, except that instead of calculating Gini

impurity or information gain, we calculate the squared error (similar to the way we

minimized sum of squared error in regression techniques). The variable that reduces the

overall mean squared error of the dataset will be the variable that splits the dataset.

To see how the decision tree works in the case of continuous dependent and

independent variables, we’ll go through the following dataset as an example (available as

“continuous variable dependent and independent variables.xlsx” in github):

variable response

-0.37535 1590

-0.37407 2309

-0.37341 815

-0.37316 2229

-0.37263 839

-0.37249 2295

-0.37248 1996

Here, the independent variable is named variable, and the dependent variable is

named response. The first step would be to sort the dataset by the independent variable,

as we did in the classification decision tree example.

Once the dataset is sorted by the independent variable of interest, our next step is to

identify the rule that splits the dataset into left and right node. We might come up with

multiple possible rules. The exercise we’ll perform would be useful in shortlisting the

one rule that splits the dataset most optimally.

Chapter 4 Decision Tree

95

From the preceding, we see that the minimal overall error occurs when variable

< -0.37249. So, the points that belong to the left node will have an average response

of 1,556, and the points that belong to the right node will have an average response of

2,146. Note that 1,556 is the average response of all the variable values that are less than

the threshold that we derived earlier. Similarly, 2,146 is the average response of all the

variable values that are greater than or equal to the threshold that we derived (0.37249).

�Continuous Dependent Variable and Multiple Continuous
Independent Variables
In classification, we considered information gain as a metric to decide the variable

that should first split the original dataset. Similarly, in the case of multiple competing

independent variables for a continuous variable prediction, we’ll shortlist the variable

that results in least overall error.

We’ll add one additional variable to the dataset we previously considered:

Chapter 4 Decision Tree

96

We already calculated the overall error for various possible rules of variable in the

previous section. Let’s calculate the overall error for the various possible rules of var2.

The first step is to sort the dataset by increasing value of var2. So, the dataset we will

work on now transforms to the following:

var2 response

0.1 1996

0.3 839

0.44 2229

0.51 2309

0.75 815

0.78 2295

0.84 1590

The overall error calculations for various possible rules that can be developed using

var2 are as follows:

Note that overall error is the least when var2 < 0.44. However, when we compare the

least overall error produced by variable and the least overall error produced by var2,

variable produces the least overall error and so should be the variable that splits the

dataset.

Chapter 4 Decision Tree

97

�Continuous Dependent Variable and Discrete
Independent Variable
To find out how it works to predict a continuous dependent variable using a discrete

independent variable, we’ll use the following dataset as an example, where “var” is the

independent variable and “response” is the dependent variable:

var response

a 1590

b 2309

c 815

a 2229

b 839

c 2295

a 1996

Let’s pivot the dataset as follows:

We’ll order the dataset by increasing average response value:

Now we’ll calculate the optimal left node and right node combination. In the first

scenario, only c would be in the left node and a,b will be in the right node. The average

response in left node will be 1555, and the average response in right node will be the

average of {1574,1938} = {1756}.

Chapter 4 Decision Tree

98

Overall error calculation in this scenario will look as follows:

var response predic�on squared error
a 1590 1,756 27,611
b 2309 1,756 305,625
c 815 1,555 547,600
a 2229 1,756 223,571
b 839 1,756 841,195
c 2295 1,555 547,600
a 1996 1,756 57,520

Overall error 2,550,722

In the second scenario, we’ll consider both {c,b} to belong to the left node and {a}

to belong to the right node. In this case, the average response in left node will be the

average of {1555,1574} = {1564.5}

The overall error in such case will be calculated as follows:

We can see that the latter combination of left and right nodes yields the lesser overall

error when compared to the previous combination. So, the ideal split in this case would

be {b,c} belonging to one node and {a} belonging to another node.

�Continuous Dependent Variable and Discrete, Continuous
Independent Variables
In the case where there are multiple independent variables, where some variables are

discrete and others are continuous, we follow the same steps as earlier:

	 1.	 Identify the optimal cut-off points for each variable individually.

	 2.	 Understand the variable that reduces uncertainty the most.

The steps to be followed remain the same as in the previous sections.

Chapter 4 Decision Tree

99

�Implementing a Decision Tree in R
The implementation of classification is different from the implementation of regression

(continuous variable prediction). Thus, a specification of the type of model is required as

an input.

The following code snippet shows how we can implement a decision tree in R

(available as “Decision tree.R” in github):

import dataset

t=read.csv("D:/Pro ML book/Decision tree/dt_continuous_dep_indep.csv")

library(rpart)

fit a decision tree using rpart function

fit=rpart(response~variable,method="anova", data=t

 ,control=rpart.control(minsplit=1,minbucket=2,maxdepth=2))

The decision tree is implemented using the functions available in a package named

rpart. The function that helps in building a decision tree is also named rpart. Note that

in rpart we specify the method parameter.

A method anova is used when the dependent variable is continuous, and a method

class is used when the dependent variable is discrete.

You can also specify the additional parameters: minsplit, minbucket, and maxdepth

(more on these in the next section).

�Implementing a Decision Tree in Python
The Python implementation of a classification problem would make use of the

DecisionTreeClassifier function in the sklearn package (The code is available as

“Decision tree.ipynb” in github):

from sklearn.tree import DecisionTreeClassifier

depth_tree = DecisionTreeClassifier()

depth_tree.fit(X, y)

For a regression problem, the Python implementation would make use of the

DecisionTreeRegressor function in the sklearn package:

from sklearn.tree import DecisionTreeRegressor

depth_tree = DecisionTreeRegressor()

depth_tree.fit(X, y)

Chapter 4 Decision Tree

100

�Common Techniques in Tree Building
We saw earlier that the complexity parameter (the number of terminal nodes) could be

one parameter for us to optimize for while checking the out-of-bag validation. Other

common techniques used include the following:

•	 Restricting the number of observations in each terminal node to a

minimum number (at least 20 observations in a node, for example)

•	 Specifying the maximum depth of a tree manually

•	 Specifying the minimum number of observations in a node for the

algorithm to consider further splitting

We do all the above to avoid the tree overfitting upon our data. To understand the

problem of overfitting, let’s go through the following scenario:

	 1.	 The tree has a total of 90 depth levels (maxdepth = 90). In this

scenario, the tree that gets constructed would have so many

branches that it overfits on the training dataset but does not

necessarily generalize on the test dataset.

	 2.	 Similar to the problem with maxdepth, minimum number of

observations in a terminal node could also lead to overfitting.

If we do not specify maxdepth and have a small number in

the minimum number of observations in the terminal node

parameter, the resulting tree again is likely to be huge, with

multiple branches, and will again be likely to result in a overfitting

to a training dataset and not generalizing for a test dataset.

	 3.	 Minimum number of observations in a node to further split is a

parameter that is very similar to minimum observations in a node,

except that this parameter restricts the number of observations in

the parent node rather than the child node.

Chapter 4 Decision Tree

101

�Visualizing a Tree Build
In R, one can plot the tree structure using the plot function available in the rpart

package. The plot function plots the skeleton of the tree, and the text function writes

the rules that are derived at various parts of the tree. Here’s a sample implementation of

visualizing a decision tree:

import dataset

t=read.csv("D:/Pro ML book/Decision tree/dt_continuous_dep_discrete_

indep.csv")

library(rpart)

fit a decision tree using rpart function

fit=rpart(response~variable,method="anova",data=t

 ,control=rpart.control(minsplit=1,minbucket=2,maxdepth=2))

plot(fit, margin=0.2)

text(fit, cex=.8)

The output of the preceding code looks like this:

From this plot, we can deduce that when var is either of b or c, then the output is

1564. If not, the output is 1938.

In Python, one way to visualize a decision tree is by using a set of packages that have

functions that help in display: Ipython.display, sklearn.externals.six, sklearn.

tree, pydot, os.

from IPython.display import Image

from sklearn.externals.six import StringIO

from sklearn.tree import export_graphviz

import pydot

features = list(data.columns[1:])

Chapter 4 Decision Tree

102

import os

os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'

dot_data = StringIO()

export_graphviz(depth_tree, out_file=dot_data,feature_names=features,

filled=True,rounded=True)

graph = pydot.graph_from_dot_data(dot_data.getvalue())

Image(graph[0].create_png())

In the preceding code, you would have to change the data frame name in place of

(data.columns[1:]) that we used in the first code snippet. Essentially, we are providing

the independent variable names as features.

In the second code snippet, you would have to specify the folder location at which

graphviz was installed and change the decision tree name to the name that the user has

given in the fourth line (replace dtree with the variable name that you have created for

DecisionTreeRegressor or DecisionTreeClassifier).

The output of the preceding code snippet looks like Figure 4-3.

Figure 4-3.  The output of the code

�Impact of Outliers on Decision Trees
In previous chapters, we’ve seen that outliers have a big impact in the case of linear

regression. However, in a decision tree outliers have little impact for classification,

because we look at the multiple possible rules and shortlist the one that maximizes the

information gain after sorting the variable of interest. Given that we are sorting the dataset

by independent variable, there is no impact of outliers in the independent variable.

Chapter 4 Decision Tree

103

However, an outlier in the dependent variable in the case of a continuous variable

prediction would be challenging if there is an outlier in the dataset. That’s because

we are using overall squared error as a metric to minimize. If the dependent variable

contains an outlier, it causes similar issues like what we saw in linear regression.

�Summary
Decision trees are simple to build and intuitive to understand. The prominent

approaches used to build a decision tree are the combination of information gain and

Gini impurity when the dependent variable is categorical and overall squared error

when the dependent variable is continuous.

Chapter 4 Decision Tree

105
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_5

CHAPTER 5

Random Forest
In Chapter 4, we looked at the process of building a decision tree. Decision trees

can overfit on top of the data in some cases—for example, when there are outliers in

dependent variable. Having correlated independent variables may also result in the

incorrect variable being selected for splitting the root node.

Random forest overcomes those challenges by building multiple decision trees,

where each decision tree works on a sample of the data. Let’s break down the term:

random refers to the random sampling of data from original dataset, and forest refers to the

building of multiple decision trees, one each for each random sample of data. (Get it? It is a

combination of multiple trees, and so is called a forest.)

In this chapter you will learn the following:

•	 Working details of random forest

•	 Advantages of random forest over decision tree

•	 The impact of various hyper-parameters on a decision tree

•	 How to implement random forest in Python and R

�A Random Forest Scenario
To illustrate why random forest is an improvement over decision tree, let’s go through a

scenario in which we try to classify whether you will like a movie or not:

	 1.	 You ask for recommendations from a person A.

	 a.	 A asks some questions to find out what your preferences are.

i.	 We’ll assume only 20 exhaustive questions are available.

ii.	 We’ll add the constraint that any person can ask from a

random selection of 10 questions out of the 20 questions.

106

iii.	 Given the 10 questions, the person ideally orders those

questions in such a way that they are in a position to

extract the maximum information from you.

	 b.	 Based on your responses, A comes up with a set of

recommendations for movies.

	 2.	 You ask for recommendations from another person, B.

	 a.	 As before, B asks questions to find out your preferences.

i.	 B is also in a position to ask only 10 questions out of the

exhaustive list of 20 questions.

ii.	 Based on the set of 10 randomly selected questions, B

again orders them to maximize the information obtained

from your preferences.

iii.	 Note that the set of questions is likely to be different

between A and B, though with some overlap.

	 b.	 Based on your responses, B comes up with recommendations.

	 3.	 In order to achieve some randomness, you may have told A that

The Godfather is the best movie you have ever watched. But you

merely told B you enjoyed watching The Godfather “a lot.”

	 a.	 This way, although the original information did not change,

the way in which the two different people learned it was

different.

	 4.	 You perform the same experiment with n friends of yours.

	 a.	 Through the preceding, you have essentially built an ensemble

of decision trees (where ensemble means combination of trees

or forest).

	 5.	 The final recommendation will be the average recommendation of

all n friends.

Chapter 5 Random Forest

107

�Bagging
Bagging is short for bootstrap aggregating. The term bootstrap refers to selecting a few rows

randomly (a sample from the original dataset), and aggregating means taking the average

of predictions from all the decision trees that are built on the sample of the dataset.

This way, the predictions are less likely to be biased due to a few outlier cases

(because there could be some trees built using sample data—where the sample data

did not have any outliers). Random forest adopts the bagging approach in building

predictions.

�Working Details of a Random Forest
The algorithm for building a random forest is as follows:

	 1.	 Subset the original data so that the decision tree is built on only a

sample of the original dataset.

	 2.	 Subset the independent variables (features) too while building the

decision tree.

	 3.	 Build a decision tree based on the subset data where the subset of

rows as well as columns is used as the dataset.

	 4.	 Predict on the test or validation dataset.

	 5.	 Repeat steps 1 through 3 n number of times, where n is the

number of trees built.

	 6.	 The final prediction on the test dataset is the average of

predictions of all n trees.

The following code in R builds the preceding algorithm (available as “rf_code.R” in

github):

t=read.csv("train_sample.csv")

The described dataset has 140 columns and 10,000 rows. The first 8,000 rows are

used to train the model, and the rest are used for testing:

train=t[1:8000,]

test=t[8001:9999,]

Chapter 5 Random Forest

108

Given that we are using decision trees to build our random forest, let’s use the rpart

package:

library(rpart)

Initialize a new column named prediction in the test dataset:

test$prediction=0

for(i in 1:1000){ # we are running 1000 times - i.e., 1000 decision trees

 y=0.5

 x=sample(1:nrow(t),round(nrow(t)*y)) # Sample 50% of total rows, as y is 0.5

t2=t[x, c(1,sample(139,5)+1)] # Sample 5 columns randomly, leaving the

first column which is the dependent variable

dt=rpart(response~.,data=t2) # Build a decision tree on the above subset

of data (sample rows and columns)

 pred1=(predict(dt,test)) # Predict based on the tree just built

 �test$prediction=(test$prediction+pred1) # Add predictions of all the

iterations of previously built decision trees

}

test$prediction = (test$prediction)/1000 # Final prediction of the value

is the average of predictions of all the iterations

�Implementing a Random Forest in R
Random forest can be implemented in R using the randomForest package. In the

following code snippet, we try predicting whether a person would survive or not in the

Titanic dataset (the code is available as “rf_code2.R” in github).

For simplicity, we will not deal with missing values and only consider those rows that

do not have missing values:

Chapter 5 Random Forest

109

In that code, we build a random forest that has 10 trees to provide predictions. The

output of that code snippet is shown here:

Note that the error message above specifies two things:

•	 The number of distinct values in some categorical independent

variables is high.

•	 Additionally, it assumes that we would have to specify regression

instead of classification.

Let’s look at why random forest might have given an error when the categorical

variable had a high number of distinct values. Note that random forest is an

implementation of multiple decision trees. In a decision tree, when there are more

distinct values, the frequency count of a majority of the distinct values is very low. When

frequency is low, the purity of the distinct value is likely to be high (or impurity is low).

But this isn’t reliable, because the number of data points is likely to be low (in a scenario

where the number of distinct values of a variable is high). Hence, random forest does not

run when the number of distinct values in categorical variable is high.

Consider the warning message in the output: “The response has five or fewer unique

values. Are you sure you want to do regression?” Note that, the column named Survived

is numeric in class. So, the algorithm by default assumed that it is a regression that needs

to be performed.

To avoid this, you need to convert the dependent variable into a categorical or factor

variable:

Chapter 5 Random Forest

110

Now we can expect the random forest predictions to be made.

If we contrast the output with decision tree, one of the major drawbacks is that the

decision tree output can be visualized as a tree, but random forest output cannot be

visualized as a tree, because it is a combination of multiple decision trees. One way to

understand the variable importance is by looking at how much of the decrease in overall

impurity is because of splitting by the different variables.

Variable importance can be calculated in R by using the function importance:

Consider how MeanDecreaseGini for the variable Sex might be calculated:

In the preceding code snippet, a sample of the original dataset is selected. That

sample is considered as a training dataset, and the rest are considered as a test dataset.

A decision tree is built based on the train dataset. Predictions are made on the out-of-

bag data—that is, the test dataset:

Chapter 5 Random Forest

111

Let us calculate the entropy of the preceding output:

p q plogp qlogq obs. Entropy
test Original 0.42982 0.570175 -0.5236 -0.46214 114 0.985744

le� node 0.26484 0.73516 -0.50765 -0.32632 42 0.833963
right node 0.79003 0.209974 -0.26863 -0.4728 72 0.741433

0.775523

test

Overall entropy

From the table, we can see that overall entropy reduces from 0.9857 to 0.7755.

Similarly, let’s consider the other extreme, the variable that is least important:

Embarked:

p q plogp qlogq obs. Entropy
test Original 0.42982 0.570175 -0.5236 -0.46214 114 0.985744

le� node 0.35185 0.648148 -0.53023 -0.40548 24 0.935711
right node 0.65244 0.347561 -0.40196 -0.52991 90 0.931871

0.932679

test

Overall entropy

From the preceding table, we see that entropy reduced from 0.9857 to only 0.9326.

So, there was a much lower reduction in entropy when compared to the variable Sex.

That means Sex as a variable is more important than Embarked.

Chapter 5 Random Forest

112

The variable importance plot can also be obtained by the function shown in

Figure 5-1.

Figure 5-1.  Variable importance plot

�Parameters to Tune in a Random Forest
In the scenario just discussed, we noticed that random forest is based on decision tree,

but on multiple trees running to produce an average prediction. Hence, the parameters

that we tune in random forest would be very much the same as the parameters that are

used to tune a decision tree.

The major parameters therefore are the following:

•	 Number of trees

•	 Depth of tree

Chapter 5 Random Forest

113

To see the impact of number of trees on the test dataset AUC, we’ll go through some

code. AUC is calculated using the following code snippet:

In the following code snippet, we increment the number of trees by a step of 10 and

see how the AUC value varies over the number of trees:

In the first two lines, we have initialized empty vectors that we will keep populating

over the for loop of different numbers of trees. After initialization, we are running a loop

where the number of trees is incremented by 10 in each step. After running the random

forest, we are calculating the AUC value of the predictions on the test dataset and keep

appending the values of AUC.

Chapter 5 Random Forest

114

The final plot of AUC over different numbers of trees is plotted in Figure 5-2.

Figure 5-2.  AUC over different number of trees

From Figure 5-2, we can see that as the number of trees increases, the AUC value

of test dataset increases in general. But after a few more iterations, the AUC might not

increase further.

�Variation of AUC by Depth of Tree
In the previous section, we noted that the maximum value of AUC occurs when the

number of trees is close to 200.

In this section, we’ll consider the impact of depth of tree on the accuracy measure

(AUC). In Chapter 4, we saw that the size of a node directly impacts the maximum depth

of a tree. For example, if minimum possible node size is high, then depth is automatically

Chapter 5 Random Forest

115

low, and vice versa. So let’s tune the node size as a parameter and see how AUC varies by

node size:

Note that the preceding code is very similar to the code we wrote for the variation in

number of trees. The only addition is the parameter nodesize.

The output of the preceding code snippet is shown in Figure 5-3.

Figure 5-3.  AUC over different node sizes

In Figure 5-3, note that as node size increases a lot, AUC of test dataset decreases.

Chapter 5 Random Forest

116

�Implementing a Random Forest in Python
Random forest is implemented in Python with the scikit-learn library. The

implementation details of random forest are shown here (available in github as “random

forest.ipynb”):

from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier(n_estimators=100,max_depth=5,min_samples_

leaf=100,random_state=10)

rfc.fit(X_train, y_train)

Predictions are made as follows:

rfc_pred=rfc.predict_proba(X_test)

Once the predictions are made, AUC can be calculated as follows:

from sklearn.metrics import roc_auc_score

roc_auc_score(y_test, rfc_pred[:,1])

�Summary
In this chapter, we saw how random forest improves upon decision tree by taking an

average prediction approach. We also saw the major parameters that need to be tuned

within a random forest: depth of tree and the number of trees. Essentially, random forest

is a bagging (bootstrap aggregating) algorithm—it combines the output of multiple

decision trees to give the prediction.

Chapter 5 Random Forest

117
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_6

CHAPTER 6

Gradient Boosting
Machine
So far, we’ve considered decision trees and random forest algorithms. We saw that

random forest is a bagging (bootstrap aggregating) algorithm—it combines the output of

multiple decision trees to give the prediction. Typically, in a bagging algorithm trees are

grown in parallel to get the average prediction across all trees, where each tree is built on

a sample of original data.

Gradient boosting, on the other hand, does the predictions using a different format.

Instead of parallelizing the tree building process, boosting takes a sequential approach

to obtaining predictions. In gradient boosting, each decision tree predicts the error of the

previous decision tree—thereby boosting (improving) the error (gradient).

In this chapter, you will learn the following:

•	 Working details of gradient boosting

•	 How gradient boosting is different from random forest

•	 The working details of AdaBoost

•	 The impact of various hyper-parameters on boosting

•	 How to implement gradient boosting in R and Python

�Gradient Boosting Machine
Gradient refers to the error, or residual, obtained after building a model. Boosting refers

to improving. The technique is known as gradient boosting machine, or GBM. Gradient

boosting is a way to gradually improve (reduce) error.

118

To see how GBM works, let’s begin with an easy example. Assume you’re given a

model M (which is based on decision tree) to improve upon. Let’s say the current model

accuracy is 80%. We want to improve on that.

We’ll express our model as follows:

Y = M(x) + error

Y is the dependent variable and M(x) is the decision tree using the x independent

variables.

Now we’ll predict the error from the previous decision tree:

error = G(x) + error2

G(x) is another decision tree that tries to predict the error using the x independent

variables.

In the next step, similar to the previous step, we build a model that tries to predict

error2 using the x independent variables:

error2 = H(x) + error3

Now we combine all these together:

Y = M(x) + G(x) + H(x) + error3

The preceding equation is likely to have an accuracy that is greater than 80% as

individually model M (single decision tree) had 80% accuracy, while in the above

equation we are considering 3 decision trees.

The next section explores the working details of how GBM works. In a later section,

we will see how an AdaBoost (adaptive boosting) algorithm works.

�Working details of GBM
Here’s the algorithm for gradient boosting:

	 1.	 Initialize predictions with a simple decision tree.

	 2.	 Calculate residual - which is the (actual-prediction) value.

	 3.	 Build another shallow decision tree that predicts residual based

on all the independent values.

Chapter 6 Gradient Boosting Machine

119

	 4.	 Update the original prediction with the new prediction multiplied

by learning rate.

	 5.	 Repeat steps 2 through 4 for a certain number of iterations

(the number of iterations will be the number of trees).

Code implementing the preceding algorithm is as follows (code and dataset available

in github as “GBM working details.ipynb”):

import pandas as pd

importing dataset

data=pd.read_csv('F:/course/Logistic regression/credit_training.csv')

removing irrelevant variables

data=data.drop(['Unnamed: 0'],axis=1)

replacing null values

data['MonthlyIncome']=data['MonthlyIncome'].fillna(value=data

['MonthlyIncome'].median())

data['NumberOfDependents']=data['NumberOfDependents'].fillna(value=data

['NumberOfDependents'].median())

from sklearn.model_selection import train_test_split

creating independent variables

X = data.drop('SeriousDlqin2yrs',axis=1)

creating dependent variables

y = data['SeriousDlqin2yrs']

creating train and test datasets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30,

random_state=42)

In the preceding code, we have split the dataset into 70% training and 30% test dataset.

Build a decision tree

from sklearn.tree import DecisionTreeClassifier

depth_tree = DecisionTreeClassifier(criterion = "gini",max_depth=4,

min_samples_leaf=10)

depth_tree.fit(X_train, y_train)

Chapter 6 Gradient Boosting Machine

120

In the preceding code, we are building a simple decision tree on the original

data with SeriousDlqin2yrs as dependent variable and the rest of the variables as

independent variables.

#Get the predictions on top of train dataset itself

dt_pred = depth_tree.predict_proba(X_train)

X_train['prediction']=dt_pred[:,1]

In the preceding code, we are predicting the outputs of the first decision tree. This

will help us in coming up with the residuals.

#Get the predictions on top of test dataset

X_test['prediction']=depth_tree.predict_proba(X_test)[:,1]

In the preceding code, though we calculate the output probabilities in the test dataset,

note that we are not in a position to calculate residuals because, as a practical matter, we

are not allowed to peek into the dependent variable of the test dataset. As a continuation

to the preceding code, we will be build 20 decision trees of residuals in the following code:

from sklearn.tree import DecisionTreeRegressor

import numpy as np

from sklearn.metrics import roc_auc_score

depth_tree2 = DecisionTreeRegressor(criterion = "mse",max_depth=4,

min_samples_leaf=10)

for i in range(20):

 # Calculate residual

 train_errorn=y_train-X_train['prediction']

 �# remove prediction variable that got appended to independent variable

earlier

 X_train2=X_train.drop(['prediction'],axis=1)

 X_test2=X_test.drop(['prediction'],axis=1)

In the preceding code, note that we are calculating the residual of the nth decision

tree. We are dropping the prediction column from the X_train2 dataset because the

prediction column cannot be one of the independent variables in the subsequent

model that gets built in the next iteration of the for loop.

 �# Build a decision tree to predict the residuals using independent

variables

 dt2=depth_tree2.fit(X_train2, train_errorn)

Chapter 6 Gradient Boosting Machine

121

 # predict the residual

 dt_pred_train_errorn = dt2.predict(X_train2)

In the preceding code, we are fitting the decision tree where the dependent variable

is the residual and the independent variables are the original independent variables of

the dataset.

Once the decision tree is fit, the next step is to predict the residual (which was the

dependent variable):

 # update the predictions based on predicted residuals

 X_train['prediction']=(X_train['prediction']+dt_pred_train_errorn*1)

 # Calculate AUC

 train_auc=roc_auc_score(y_train,X_train['prediction'])

 print("AUC on training data set is: "+str(train_auc))

In that code, the original predictions (which are stored in the X_train dataset) are

updated with the predicted residuals we obtained in the previous step.

Note that we are updating our predictions by the prediction of residual (dt_pred_

train_errorn). We have explicitly given a *1 in the preceding code because the concept

of shrinkage or learning rate will be explained in the next section (the *1 will be replaced

by *learning_rate).

Once the predictions are updated, we calculate the AUC on the training dataset:

 # update the predictions based on predicted residuals for test dataset

 dt_pred_test_errorn = dt2.predict(X_test2)

 X_test['prediction']=(X_test['prediction']+dt_pred_test_errorn)

 # Calculate AUC

 test_auc=roc_auc_score(y_test,X_test['prediction'])

 print("AUC on test data set is: "+str(test_auc))

Here we update the predictions on the test dataset. We do not know the residuals of

test dataset, but we update predictions on the test dataset on the basis of the decision

tree that got built to predict the residuals of the training dataset. Ideally, if the test dataset

has no residuals, the predicted residuals should be close to 0, and if the original decision

tree of the test dataset had some residuals, then the predicted residuals would be away

from 0.

Once the predictions of the test dataset are updated, we print out the AUC of the test

dataset.

Chapter 6 Gradient Boosting Machine

122

Let’s look at the output of the preceding code:

Chapter 6 Gradient Boosting Machine

123

Note that the AUC of train dataset keeps on increasing with more trees. But the AUC

of the test dataset decreases after a certain iteration.

�Shrinkage
GBM is based on decision tree. So, just like Random Forest algorithm, the accuracy of

GBM depends on the depth of trees considered, number of trees built and the minimum

number of observations in a terminal node. Shrinkage is an additional parameter in

GBM. Let’s see what happens to the output of the train and test dataset AUC if we change

the learning rate/shrinkage. We’ll initialize the learning rate to be equal to 0.05 and run

more trees:

from sklearn.model_selection import train_test_split

creating independent variables

X = data.drop('SeriousDlqin2yrs',axis=1)

creating dependent variables

y = data['SeriousDlqin2yrs']

creating train and test datasets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30,

random_state=42)

from sklearn.tree import DecisionTreeClassifier

depth_tree = DecisionTreeClassifier(criterion = "gini",max_depth=4,

min_samples_leaf=10)

depth_tree.fit(X_train, y_train)

#Get the predictions on top of train and test datasets

dt_pred = depth_tree.predict_proba(X_train)

X_train['prediction']=dt_pred[:,1]

X_test['prediction']=depth_tree.predict_proba(X_test)[:,1]

from sklearn.tree import DecisionTreeRegressor

import numpy as np

from sklearn.metrics import roc_auc_score

depth_tree2 = DecisionTreeRegressor(criterion = "mse",max_depth=4,

min_samples_leaf=10)

learning_rate = 0.05

Chapter 6 Gradient Boosting Machine

124

for i in range(20):

 # Calculate residual

 train_errorn=y_train-X_train['prediction']

 �# remove prediction variable that got appended to independent variable

earlier

 X_train2=X_train.drop(['prediction'],axis=1)

 X_test2=X_test.drop(['prediction'],axis=1)

 �# Build a decision tree to predict the residuals using independent

variables

 dt2=depth_tree2.fit(X_train2, train_errorn)

 # predict the residual

 dt_pred_train_errorn = dt2.predict(X_train2)

 # update the predictions based on predicted residuals

 �X_train['prediction']=(X_train['prediction']+dt_pred_train_

errorn*learning_rate)

 # Calculate AUC

 train_auc=roc_auc_score(y_train,X_train['prediction'])

 print("AUC on training data set is: "+str(train_auc))

 # update the predictions based on predicted residuals for test dataset

 dt_pred_test_errorn = dt2.predict(X_test2)

 �X_test['prediction']=(X_test['prediction']+dt_pred_test_

errorn*learning_rate)

 # Calculate AUC

 test_auc=roc_auc_score(y_test,X_test['prediction'])

 print("AUC on test data set is: "+str(test_auc))

The output of the preceding code is:

Chapter 6 Gradient Boosting Machine

125

Here is the output of the first few trees:

And here is the output of the last few trees:

Chapter 6 Gradient Boosting Machine

126

Unlike in the previous case, where learning_rate = 1, lower learning_rate resulted

in the test dataset AUC increasing consistently along with the training dataset AUC.

�AdaBoost
Before proceeding to the other methods of boosting, I want to draw a parallel from

what we’ve seen in previous chapters. While calculating the error metric for logistic

regression, we could have gone with the traditional squared error. But we moved to the

entropy error, because it penalizes more for high amount of error.

In a similar manner, residual calculation can vary by the type of dependent variable.

For a continuous dependent variable, residual calculation can be Gaussian ((actual –

prediction) of dependent variable), whereas for a discrete variable, residual calculation

could be different.

�Theory of AdaBoost
AdaBoost is short for adaptive boosting. Here is the high-level algorithm:

	 1.	 Build a weak learner (decision tree technique in this case) using

only a few independent variables.

	 a.	 Note that while building the first weak learner, the weightage

associated with each observation is the same.

	 2.	 Identify the observations that are classified incorrectly based on

the weak learner.

	 3.	 Update the weights of the observations in such a way that the

misclassifications in the previous weak learner are given more

weightage and the correct classifications in the previous weak

learner are given less weightage.

	 4.	 Assign a weightage for each weak learner based on the accuracy of

its predictions.

	 5.	 The final prediction will be based on the weighted average

prediction of multiple weak learners.

Adaptive potentially refers to the updating of weights of observations, depending on

whether the previous classification was correct or incorrect. Boosting potentially refers to

assigning the weightages to each weak learner.

Chapter 6 Gradient Boosting Machine

127

�Working Details of AdaBoost
Let’s look at an example of AdaBoost:

	 1.	 Build a weak learner.

Let’s say the dataset is the first two columns in the following table

(available as “adaboost.xlsx” in github):

Once we have the dataset, we build a weak learner (decision tree)

according to the steps laid out to the right in the preceding table.

From the table we can see that X <= 4 is the optimal splitting

criterion for this first decision tree.

	 2.	 Calculate the error metric (the reason for having “Changed Y” and

“Yhat” as new columns in the below table will be explained after

step 4):

Chapter 6 Gradient Boosting Machine

128

The formulae used to obtain the preceding table are as follows:

	 3.	 Calculate the weightage that should be associated with the first

weak learner:

0.5 × log((1 – error)/error) = 0.5 × log(0.9 / 0.1) = 0.5 × log(9) = 0.477

	 4.	 Update the weights associated with each observation in such a

way that the previous weak learner’s misclassifications have high

weight and the correct classifications have low weight (essentially,

we are tuning the weights associated with each observation in

such a way that, in the new iteration, we try and make sure that

the misclassifications are predicted more accurately):

Chapter 6 Gradient Boosting Machine

129

Note that the updated weights are calculated by the following

formula:

	 originalweight e weightage of learner yhat changed y* * *-() 	

That formula should explain the need for changing the discrete

values of y from {0,1} to {–1,1}. By changing 0 to –1, we are in a

position to perform the multiplication better. Also note that in

the preceding formula, weightage associated with the learner in

general would more often than not be positive.

When yhat and changed_y are the same, the exponential part of

formula would be a lower number (as the – weightage of learner

× yhat × changed_y part of the formula would be negative, and an

exponential of a negative is a small number).

When yhat and changed_y are different values, that’s when the

exponential would be a bigger number, and hence the updated

weight would be more than the original weight.

	 5.	 We observe that the updated weights we obtained earlier do not sum

up to 1. We update each weight in such a way that the sum of weights

of all observations is equal to 1. Note that, the moment weights are

introduced, we can consider this as a regression exercise.

Now that the weight for each observation is updated, we

repeat the preceding steps until the weight of the misclassified

observations increases so much that it is now correctly classified:

Chapter 6 Gradient Boosting Machine

130

Note that the weights in the third column in the preceding

table are updated based on the formula we derived earlier post

normalization (ensuring that the sum of weights is 1).

You should be able to see that the weight associated with

misclassification (the eighth observation with the independent

variable value of 8) is more than any other observation.

Note that although everything is similar to a typical decision tree

till the prediction columns, error calculation gives emphasis to

weights of observations. error in the left node is the summation

of the weight of each observation that was misclassified in the left

node and similarly for the right node.

overall error is the summation of error across both nodes (error in

left node + error in right node).

In this instance, overall error is still the least at the fourth

observation.

The updated weights based on the previous step are as follows:

Chapter 6 Gradient Boosting Machine

131

Continue the process one more time:

From the preceding table, note that overall error in this iteration

is minimum at X <= 8, as the weight associated with the eighth

observation is a lot more than other observations, and hence

overall error came up as the least at the eighth observation this

time. However, note that the weightage associated with the

preceding tree would be low, because the accuracy of that tree is

low when compared to the previous two trees.

	 6.	 Once all the predictions are made, the final prediction for an

observation is calculated as the summation of the weightage

associated with each weak learner multiplied by the probability

output for each observation.

Chapter 6 Gradient Boosting Machine

132

�Additional Functionality for GBM
In the previous section, we saw how to hand construct GBM. In this section, we will look

at other parameters that can be built in:

•	 Row sampling: In random forest, we saw that sampling a random

selection of rows results in a more generalized and better model.

In GBM, too, we can potentially sample rows to improve the model

performance further.

•	 Column sampling: Similar to row sampling, some amount of

overfitting can be avoided by sampling columns for each decision tree.

Both random forest and GBM techniques are based on decision tree. However, a

random forest can be thought of as building multiple trees in parallel, where in the

end we take the average of all the multiple trees as the final prediction. In a GBM, we

build multiple trees, but in sequence, where each tree tries to predict the residual of its

previous tree.

�Implementing GBM in Python
GBM can be implemented in Python using the scikit-learn library as follows (code is

available as “GBM.ipynb” in github):

from sklearn import ensemble

gb_tree = ensemble.GradientBoostingClassifier(loss='deviance',

learning_rate=0.05,n_estimators=100,min_samples_leaf=10,max_depth=13,

max_features=2,subsample=0.7,random_state=10)

gb_tree.fit(X_train, y_train)

Note that the key input parameters are a loss function (whether it is a normal

residual approach or an AdaBoost-based approach), learning rate, number of trees,

depth of each tree, column sampling, and row sampling.

Once a GBM is built, the predictions can be made as follows:

from sklearn.metrics import roc_auc_score

gb_pred=gb_tree.predict_proba(X_test)

roc_auc_score(y_test, gb_pred[:,1])

Chapter 6 Gradient Boosting Machine

133

�Implementing GBM in R
GBM in R has similar parameters to GBM in Python. GBM can be implemented as

follows:

In that formula, we specify the dependent and independent variables in the

following fashion: dependent_variable ~ the set of independent variables to be used.

The distribution specifies whether it is a Gaussian, Bernoulli, or AdaBoost algorithm.

•	 n. trees specifies the number of trees to be built.

•	 interaction.depth is the max_depth of the trees.

•	 n.minobsinnode is the minimum number of observations in a node.

•	 shrinkage is the learning rate.

•	 bag.fraction is the fraction of the training set observations randomly

selected to propose the next tree in the expansion.

GBM algorithm in R is run as follows:

library(gbm)

gb=gbm(SeriousDlqin2yrs~.,data=train,n.trees=10,interaction.depth=5,

shrinkage=0.05)

Chapter 6 Gradient Boosting Machine

134

The predictions can be made as follows:

pred=predict(gb,test,n.trees=10,type="response")

�Summary
In this chapter, you learnt the following:

•	 GBM is a decision tree–based algorithm that tries to predict the

residual of the previous decision tree in a given decision tree.

•	 Shrinkage and depth are some of the more important parameters

that need to be tuned within GBM.

•	 The difference between gradient boosting and adaptive boosting.

•	 How tuning the learning rate parameter improves prediction

accuracy in GBM.

Chapter 6 Gradient Boosting Machine

135
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_7

CHAPTER 7

Artificial Neural Network
Artificial neural network is a supervised learning algorithm that leverages a mix of

multiple hyper-parameters that help in approximating complex relation between input

and output. Some of the hyper-parameters in artificial neural network include the

following:

•	 Number of hidden layers

•	 Number of hidden units

•	 Activation function

•	 Learning rate

In this chapter, you will learn the following:

•	 Working details of neural networks

•	 The impact of various hyper-parameters on neural networks

•	 Feed-forward and back propagation

•	 The impact of learning rate on weight updates

•	 Ways to avoid Over-fitting in neural networks

•	 How to implement neural network in Excel, Python, and R

Neural networks came about from the fact that not everything can be approximated

by a linear/logistic regression—there may be potentially complex shapes within data that

can only be approximated by complex functions. The more complex the function (with

some way to take care of overfitting), the better is the accuracy of predictions. We’ll start

by looking at how neural networks work toward fitting data into a model.

136

�Structure of a Neural Network
The typical structure of a neural network is shown in Figure 7-1.

Figure 7-1.  Neural network structure

The input level/layer in the figure is typically the independent variables that are used

to predict the output (dependent variable) level/layer. Typically in a regression

problem, there will be only one node in output layer and in a classification problem,

the output layer contains as many nodes as the number of classes (distinct values)

present in dependent variable. The hidden level/layer is used to transform the input

variables into a higher order function. The way the hidden layer transforms the output

is shown in Figure 7-2.

Chapter 7 Artificial Neural Network

137

In Figure 7.2, x1 and x2 are the independent variables, and b0 is the bias term

(similar to the bias in linear/logistic regression). w1 and w2 are the weights given to each

of the input variables. If a is one of the units/neurons in hidden layer, it is equal to the

following:

	
a f w x

i

N

i i=
æ

è
ç

ö

ø
÷

=
å

0 	

The function in the preceding equation is the activation function we are applying on

top of the summation so that we attain non-linearity (we need non-linearity so that our

model can now learn complex patterns). The different activation functions are discussed

in more detail in a later section.

Moreover, having more than one hidden layer helps in achieving high non-linearity.

We want to achieve high non-linearity because without it, a neural network would be a

giant linear function.

Hidden layers are necessary when the neural network has to make sense of

something very complicated, contextual, or non-obvious, like image recognition. The

term deep learning comes from having many hidden layers. These layers are known as

hidden because they are not visible as a network output.

Figure 7-2.  Transforming the output

Chapter 7 Artificial Neural Network

138

�Working Details of Training a Neural Network
Training a neural network basically means calibrating all the weights by repeating two

key steps: forward propagation and back propagation.

In forward propagation, we apply a set of weights to the input data and calculate

an output. For the first forward propagation, the set of weights’ values are initialized

randomly.

In back propagation, we measure the margin of error of the output and adjust the

weights accordingly to decrease the error.

Neural networks repeat both forward and back propagation until the weights are

calibrated to accurately predict an output.

�Forward Propagation
Let’s go through a simple example of training a neural network to function as an

exclusive or (XOR) operation to illustrate each step in the training process. The XOR

function can be represented by the mapping of the inputs and outputs, as shown in the

following table, which we’ll use as training data. It should provide a correct output given

any input acceptable by the XOR function.

Input Output

(0,0) 0

(0,1) 1

(1,0) 1

(1,1) 0

Let’s use the last row from the preceding table, (1,1) => 0, to demonstrate forward

propagation, as shown in Figure 7-3. Note that, while this is a classification problem,

we will still treat it as a regression problem, only to understand how forward and back

propagation work.

Chapter 7 Artificial Neural Network

139

We now assign weights to all the synapses. Note that these weights are selected

randomly (the most common way is based on Gaussian distribution) since it is the

first time we’re forward propagating. The initial weights are randomly assigned to be

between 0 and 1 (but note that the final weights don’t need to be between 0 and 1), as

shown in Figure 7-4.

Figure 7-3.  Applying a neural network

Chapter 7 Artificial Neural Network

140

We sum the product of the inputs with their corresponding set of weights to arrive

at the first values for the hidden layer (Figure 7-5). You can think of the weights as

measures of influence that the input nodes have on the output:

1 × 0.8 + 1 × 0.2 = 1

1 × 0.4 + 1 × 0.9 = 1.3

1 × 0.3 + 1 × 0.5 = 0.8

Figure 7-4.  Weights on the synapses

Chapter 7 Artificial Neural Network

141

�Applying the Activation Function
Activation functions are applied at the hidden layer of a neural network. The purpose

of an activation function is to transform the input signal into an output signal. They

are necessary for neural networks to model complex non-linear patterns that simpler

models might miss.

Some of the major activation functions are as follows:

	
Sigmoid = +()-1 1/ e x

	

	
Tanh =

-
+

-

-

e e

e e

x x

x x 	

Rectified linear unit = x if x > 0, else 0

Figure 7-5.  Values for the hidden layer

Chapter 7 Artificial Neural Network

142

For our example, let’s use the sigmoid function for activation. And applying

Sigmoid(x) to the three hidden layer sums, we get Figure 7-6:

Sigmoid(1.0) = 0.731

Sigmoid(1.3) = 0.785

Sigmoid(0.8) = 0.689

Then we sum the product of the hidden layer results with the second set of weights

(also determined at random the first time around) to determine the output sum:

0.73 × 0.3 + 0.79 × 0.5 + 0.69 × 0.9 = 1.235

Figure 7-6.  Applying sigmoid to the hidden layer sums

Chapter 7 Artificial Neural Network

143

Figure 7-7.  Applying the activation function

Because we used a random set of initial weights, the value of the output neuron is off

the mark—in this case, by 1.235 (since the target is 0).

In Excel, the preceding would look as follows (the excel is available as “NN.xlsx” in

github):

	 1.	 The input layer has two inputs (1,1), thus input layer is of

dimension of 1 × 2 (because every input has two different values).

	 2.	 The 1 × 2 hidden layer is multiplied with a randomly initialized

matrix of dimension 2 × 3.

	 3.	 The output of input to hidden layer is a 1 × 3 matrix:

Chapter 7 Artificial Neural Network

144

The formulas for the preceding outputs are as follows:

The output of the activation function is multiplied by a 3 × 1 dimensional randomly

initialized matrix to get an output that is 1 × 1 in dimension:

Chapter 7 Artificial Neural Network

145

The way to obtain the preceding output is per the following formula:

Again, while this is a classification exercise, where we use cross entropy error as loss

function, we will still use squared error loss function only to make the back propagation

calculations easier to understand. We will understand about how classification works in

neural network in a later section.

Once we have the output, we calculate the squared error (Overall error) - which is

(1.233-0)2, as follows:

The various steps involved in obtaining squared error from an input layer,

collectively form a forward propagation.

Chapter 7 Artificial Neural Network

146

�Back Propagation
In forward propagation, we took a step from input to hidden to output. In backward

propagation, we take the reverse approach: essentially, change each weight starting from

the last layer by a small amount until the minimum possible error is reached. When a

weight is changed, the overall error either decreases or increases. Depending on whether

error increased or decreased, the direction in which a weight is updated is decided.

Moreover, in some scenarios, for a small change in weight, error increases/decreases by

quite a bit, and in some cases error changes only by a small amount.

Summing it up, by updating weights by a small amount and measuring the change in

error, we are able to do the following:

	 1.	 Decide the direction in which weight needs to be updated

	 2.	 Decide the magnitude by which the weights need to be updated

Before proceeding with implementing back propagation in Excel, let’s look at one

additional aspect of neural networks: the learning rate. Learning rate helps us in building

trust in our decision of weight updates. For example, while deciding on the magnitude

of weight update, we would potentially not change everything in one go but rather take

a more careful approach in updating the weights more slowly. This results in obtaining

stability in our model. A later section discusses how learning rate helps in stability.

�Working Out Back Propagation
To see how back propagation works, let’s look at updating the randomly initialized

weight values in the previous section.

Chapter 7 Artificial Neural Network

147

The overall error of the network with the randomly initialized weight values is 1.52.

Let’s change the weight between hidden to output layer from 0.3 to 0.29 and see the

impact on overall error:

Note that with a small decrease in weight, the overall error decreases from 1.52 to 1.50.

Thus, from the two points mentioned earlier, we conclude that 0.3 needs to be reduced

to a lower number. The question we need to answer after deciding the direction in which

the weight needs to be updated is: “What is the magnitude of weight update?”

If error decreases by a lot from changing the weight by a small amount (0.01), then

potentially, weights can be updated by a bigger amount. But if error decreases only by

a small amount when weights get updated by a small amount, then weights need to be

updated slowly. Thus the weight with a value of 0.3 between the hidden to output layer

gets updated as follows:

0.3 – 0.05 × (Reduction in error because of change in weight)

The 0.05 there is the learning parameter, which is to be given as input by user -

more on learning rate in the next section. Thus the weight value gets updated to

0.3 – 0.05 × ((1.52 - 1.50) / 0.01) = 0.21.

Similarly, the other weights get updated to 0.403 and 0.815:

Chapter 7 Artificial Neural Network

148

Note that the overall error decreased by quite a bit by just changing the weights

connecting the hidden layer to the output layer.

Now that we have updated the weights in one layer, we’ll update weights that exist in

the earlier part of the network—that is, between input and hidden layer activation. Let’s

change the weight values and calculate the change in error:

Original weight Updated weight Decrease in error

0.8 0.7957 0.0009

0.4 0.3930 0.0014

0.3 0.2820 0.0036

0.2 0.1957 0.0009

0.9 0.8930 0.0014

0.5 0.4820 0.0036

Given that error is decreasing every time when the weights are decreased by a small

value, we will reduce all the weights to the value calculated above.

Now that the weights are updated, note that the overall error decreased from 1.52 to

1.05. We keep repeating the forward and backward propagation until the overall error is

minimized as much as possible.

�Stochastic Gradient Descent
Gradient descent is the way in which error is minimized in the scenario just discussed.

Gradient stands for difference (the difference between actual and predicted) and descent

means to reduce. Stochastic stands for the subset of training data considered to calculate

error and thereby weight update (more on the subset of data in a later section).

�Diving Deep into Gradient Descent
To further our understanding of gradient descent neural networks, let’s start with a

known function and see how the weights could be derived: for now, we will have the

known function as y = 6 + 5x.

Chapter 7 Artificial Neural Network

149

The dataset would look as follows (available as “gradient descent batch size.xlsx”

in github):

x y

1 11

2 16

3 21

4 26

5 31

6 36

7 41

8 46

9 51

10 56

Let’s randomly initialize the parameters a and b to values of 2 and 3 (the ideal values

of which are 5 and 6). The calculations of weight updates would be as follows:

Note that we started with the random initialization of a_estimate and b_estimate

estimate with 2 and 3 (row 1, columns 3 and 4).

We calculate the following:

•	 Calculate the estimate of y using the randomly initialized values

of a and b: 5.

•	 Calculate the squared error corresponding to the values of a and b

(36 in row 1).

Chapter 7 Artificial Neural Network

150

•	 Change the value of a slightly (increase it by 0.01) and calculate the

squared error corresponding to the changed a value. This is stored as

the error_change_a column.

•	 Calculate the change in error in delta_error_a (which is change in

error / 0.01). Note that the delta would be very similar if we perform

differentiation over loss function with respect to a.

•	 Update the value of a based on: new_a = a_estimate + (delta_

error_a) × learning_rate.

We consider the learning rate to be 0.01 in this analysis. Do the same analysis for

the updated estimate of b. Here are the formulas corresponding to the calculations just

described:

Chapter 7 Artificial Neural Network

151

Once the values of a and b are updated (new_a and new_b are calculated in the first

row), perform the same analysis on row 2 (Note that we start off row 2 with the updated

values of a and b obtained from the previous row.) We keep on updating the values of a

and b until all the data points are covered. At the end, the updated value of a and b are

2.75 and 5.3.

Now that we have run through the entire set of data, we’ll repeat the whole process

with 2.75 and 5.3, as follows:

The values of a and b started at 2.75 and 5.3 and ended up at 2.87 and 5.29, which is a

little more accurate than the previous iteration. With more iterations, the values of a and

b would converge to the optimal value.

We’ve looked at the working details of basic gradient descent, but other optimizers

perform a similar functionality. Some of them are as follows:

•	 RMSprop

•	 Adagrad

•	 Adadelta

•	 Adam

•	 Adamax

•	 Nadam

Chapter 7 Artificial Neural Network

152

�Why Have a Learning Rate?
In the scenario just discussed, by having a learning rate of 0.01 we moved the weights

from 2,3 to 2.75 and 5.3. Let’s look at how the weights would change had the learning rate

been 0.05:

Note that the moment the learning rate changed from 0.01 to 0.05, in this particular

case, the values of a and b started to have abnormal variations over the latter data points.

Thus, a lower learning rate is always preferred. However, note that a lower learning rate

would result in a longer time (more iterations) to get the optimal results.

�Batch Training
So far, we have seen that the values of a and b get updated for every row of a dataset.

However, that might not be a good idea, as variable values can significantly impact the

values of a and b. Hence, the error calculation is typically done over a batch of data as

follows. Let’s say the batch size is 2 (in the previous case, batch size was 1):

x y
a_
estimate

b_
estimate

y_
estimate

squared
error

error_
change_a

delta_
error_a new_a

error_
change_b

delta_
error_b new_b

1 11 2 3 5 36 35.8801 11.99 35.8801 11.99

2 16 2 3 8 64 63.8401 15.99 63.6804 31.96

Overall 100 99.7202 27.98 2.2798 99.5605 43.95 3.4395

Chapter 7 Artificial Neural Network

153

Now for the next batch, the updated values of a and b are 2.28 and 3.44:

x y
a_
estimate

b_
estimate

y_
estimate

squared
error

error_
change_a

delta_
error_a new_a

error_
change_b

delta_
error_b new_b

3 21 2.28 3.44 12.60 70.59 70.42 16.79 70.09 50.32

4 26 2.28 3.44 16.04 99.25 99.05 19.91 98.45 79.54

Overall 169.83 169.47 36.71 2.65 168.54 129.86 4.74

The updated values of a and b are now 2.65 and 4.74, and the iterations continue.

Note that, in practice, batch size is at least 32.

�The Concept of Softmax
So far, in the Excel implementations, we have performed regression and not

classification. They key difference to note when we perform classification is that the

output is bound between 0 and 1. In the case of a binary classification, the output layer

would have two nodes instead of one. One node corresponds to an output of 0, and the

other corresponds to an output of 1.

Now we’ll look at how our calculation changes for the discussion in the previous

section (where the input is 1,1 and the expected output is 0) when the output layer has

two nodes. Given that the output is 0, we will one-hot-encode the output as follows:

[1,0], where the first index corresponds to an output of 0 and the second index value

corresponds to an output of 1.

The weight matrix connecting the hidden layer and the output layer gets changed

as follows: instead of a 3 × 1 matrix, it becomes a 3 × 2 matrix, because the hidden layer

is now connected to two output nodes (unlike the regression exercise, where it was

connected to 1 node):

Chapter 7 Artificial Neural Network

154

Note that because the output nodes are to, our output layer also contains two values,

as follows:

The one issue with the preceding output is that it has values that are >1 (in other

cases, the values could be <0 as well).

Softmax activation comes in handy in such scenario, where the output is beyond the

expected value between 0 and 1. Softmax of the above output is calculated as follows:

In Softmax step 1 below, the output is raised to its exponential value. Note that 3.43 is

the exponential of 1.233:

In Softmax step 2 below, the softmax output is normalized to get the probabilities in

such a way that the sum of probability of both outputs is 1:

Note that the value of 0.65 is obtained by 3.43 / (3.43 + 1.81).

Now that we have the probability values, instead of calculating the overall squared

error, we calculate the cross entropy error, as follows:

	 1.	 The final softmax step is compared with actual output:

Chapter 7 Artificial Neural Network

155

	 2.	 The cross entropy error is calculated based on the actual values

and the predicted values (which are obtained from softmax step 2):

Note the formula for cross entropy error in the formula pane.

Now that we have the final error measure, we deploy gradient descent again to

minimize the overall cross entropy error.

�Different Loss Optimization Functions
One can optimize for different measures—for example, squared error in regression and

cross entropy error in classification. The other loss functions that can be optimized

include the following:

•	 Mean squared error

•	 Mean absolute percentage error

•	 Mean squared logarithmic error

•	 Squared hinge

•	 Hinge

•	 Categorical hinge

•	 Logcosh

•	 Categorical cross entropy

•	 Sparse categorical cross entropy

•	 Binary cross entropy

Chapter 7 Artificial Neural Network

156

•	 Kullback Leibler divergence

•	 Poisson

•	 Cosine proximity

�Scaling a Dataset
Typically, neural networks perform well when we scale the input datasets. In this

section, we’ll look at the reason for scaling. To see the impact of scaling on outputs, we’ll

contrast two scenarios.

�Scenario Without Scaling the Input

In the preceding table, various scenarios are calculated where the input is always

the same, 255, but the weight that multiplies the input is different in each scenario. Note

that the sigmoid output does not change, even though the weight varies by a lot. That’s

because the weight is multiplied by a large number, the output of which is also a large

number.

Chapter 7 Artificial Neural Network

157

�Scenario with Input Scaling

In this scenario, we’ll multiply different weight values by a small input number, as

follows:

Now that weights are multiplied by a smaller number, sigmoid output differs by quite

a bit for differing weight values.

The problem with a high magnitude of independent variables is significant as the

weights need to be adjusted slowly to arrive at the optimal weight value. Given that

the weights get adjusted slowly (per the learning rate in gradient descent), it may take

considerable time to arrive at the optimal weights when the input is a high magnitude

number. Thus, to arrive at an optimal weight value, it is always better to scale the dataset

first so that we have our inputs as a small number.

�Implementing Neural Network in Python
There are several ways of implementing neural network in Python. Here, we’ll look at

implementing neural network using the keras framework. You must install tensorflow/

theano, and keras before you can implement neural network.

	 1.	 Download the dataset and extract the train and test dataset

(code available as “NN.ipynb” in github)

from keras.datasets import mnist

import matplotlib.pyplot as plt

%matplotlib inline

load (downloaded if needed) the MNIST dataset

Chapter 7 Artificial Neural Network

158

(X_train, y_train), (X_test, y_test) = mnist.load_data()

plot 4 images as gray scale

plt.subplot(221)

plt.imshow(X_train[0], cmap=plt.get_cmap('gray'))

plt.subplot(222)

plt.imshow(X_train[1], cmap=plt.get_cmap('gray'))

plt.subplot(223)

plt.imshow(X_train[2], cmap=plt.get_cmap('gray'))

plt.subplot(224)

plt.imshow(X_train[3], cmap=plt.get_cmap('gray'))

show the plot

plt.show()

	 2.	 Import the relevant packages:

import numpy as np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.utils import np_utils

Figure 7-8.  The output

Chapter 7 Artificial Neural Network

159

	 3.	 Pre-process the dataset:

num_pixels = X_train.shape[1] * X_train.shape[2]

reshape the inputs so that they can be passed to the

vanilla NN

X_train = X_train.reshape(X_train.shape[0],num_pixels

).astype('float32')

X_test = X_test.reshape(X_test.shape[0],num_pixels).

astype('float32')

scale inputs

X_train = X_train / 255

X_test = X_test / 255

one hot encode the output

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

num_classes = y_test.shape[1]

	 4.	 Build a model:

building the model

model = Sequential()

add 1000 units in the hidden layer

apply relu activation in hidden layer

model.add(Dense(1000, input_dim=num_

pixels,activation='relu'))

initialize the output layer

model.add(Dense(num_classes, activation='softmax'))

compile the model

model.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['accuracy'])

extract the summary of model

model.summary()

Chapter 7 Artificial Neural Network

160

	 5.	 Run the model:

model.fit(X_train, y_train, validation_data=(X_test,

y_test), epochs=5, batch_size=1024, verbose=1)

Note that as the number of epochs increases, accuracy on the test dataset increases

as well. Also, in keras we only need to specify the input dimensions in the first layer, and

it automatically figures the dimensions for the rest of the layers.

Avoiding Over-fitting using Regularization
Even though we have scaled the dataset, neural networks are likely to overfit on training

dataset, as, the loss function (squared error or cross entropy error) ensures that loss is

minimized over increasing number of epochs.

However, while training loss keeps on decreasing, it is not necessary that loss on

test dataset is also decreasing. With more number of weights (parameters) in a neural

network, the chances of over-fitting on training dataset and thus not generalizing on an

unseen test dataset is high.

Chapter 7 Artificial Neural Network

161

Let us contrast two scenario using the same neural network architecture on MNIST

dataset, where in scenario A we consider 5 epochs and thus less chances of over-fitting,

while in scenario B, we consider 100 epochs and thus more chances of over-fitting (code

available as “Need for regularization in neural network.ipynb” in github).

We should notice that the difference between training and test dataset accuracy is

less in the initial few epochs, but as the number of epochs increase, accuracy on training

dataset increases, while the test dataset accuracy might not increase after some epochs.

In the case of our run, we see the following accuracy metrics:

Scenario Training dataset Test dataset

5 epochs 97.57% 97.27%

100 epochs 100% 98.28%

Once we plot the histogram of weights (for this example, the weights connecting hidden

layer to output layer), we will notice that weights have a higher spread (range) in 100 epochs

scenario, when compared to weights in 5 epochs scenario, as shown in the below picture:

100 epochs scenario had higher weight range, as it was trying to adjust for the edge

cases in training dataset over the later epochs, while 5 epochs scenario did not have the

opportunity to adjust for the edge cases. While training dataset’s edge cases got covered

by the weight updates, it is not necessary that test dataset edge cases behave similarly

and thus might not have got covered by weight updates. Also, note that an edge case in

training dataset can be covered by giving a very high weightage to certain pixels and thus

moving quickly towards saturating to either 1 or 0 of the sigmoid curve.

Chapter 7 Artificial Neural Network

162

Thus, having high weight values are not desirable for generalization purposes.

Regularization comes in handy in such scenario.

Regularization penalizes for having high magnitude of weights. The major types of

regularization used are - L1 & L2 regularization

L2 regularization adds the additional cost term to error (loss function) as åwi
2

L1 regularization adds the additional cost term to error (loss function) as åwi

This way, we make sure that weights cannot be adjusted to have a high value so that

they work for extreme edge cases in only train dataset.

�Assigning Weightage to Regularization term
We notice that our modified loss function, in case of L2 regularization is as follows:

Overall Loss = å -() + åy y wi
ˆ 2 2l

where l is the weightage associated with the regularization term and is a hyper-parameter

that needs to be tuned. Similarly, overall loss in case of L1 regularization is as follows:

Overall Loss = å -() + åy y wi
ˆ 2

l
L1/ L2 regularization is implemented in Python as follows:

from keras import regularizers

model3 = Sequential()

model3.add(Dense(1000, input_dim=784, activation='relu',

kernel_regularizer=regularizers.l2(0.001)))

model3.add(Dense(10, activation='softmax', kernel_regularizer=regularizers.

l2(0.001)))

model3.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

model3.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=100,

batch_size=1024, verbose=2)

Notice that, the above involves, invoking an additional hyper-parameter - “kernel_

regularizer” and then specifying whether it is an L1 / L2 regularization. Further we also

specify the l value that gives the weightage to regularization.

Chapter 7 Artificial Neural Network

163

We notice that, post regularization, training and test dataset accuracy are similar to

each other, where training dataset accuracy is 97.6% while test dataset accuracy is 97.5%.

The histogram of weights post L2 regularization is as follows:

We notice that a majority of weights are now much closer to 0 when compared to

the previous two scenarios and thus avoiding the overfitting issue that was caused due

to high weight values assigned for edge cases. We would see a similar trend in case of L1

regularization.

Thus, L1 and L2 regularizations help us in avoiding the issue of overfitting on top of

training dataset but not generalizing on test dataset.

�Implementing Neural Network in R
Similar to the way we implemented a neural network in Python, we will use the keras

framework to implement neural network in R. As with Python, multiple packages help us

achieve the result.

In order to build neural network models, we will use the kerasR package in R. Given

all the dependencies that the kerasR package has on Python, and the need to create a

virtual environment, we will perform R implementation in the cloud, as follows (code

available as “NN.R” in github):

	 1.	 Install the kerasR package:

install.packages("kerasR")

	 2.	 Load the installed package:

library(kerasR)

Chapter 7 Artificial Neural Network

164

	 3.	 Use the MNIST dataset for analysis:

mnist <- load_mnist()

	 4.	 Examine the structure of the mnist object:

str(mnist)

Note that by default the MNIST dataset has the train and test

datasets split.

	 5.	 Extract the train and test datasets:

mnist <- load_mnist()

X_train <- mnist$X_train

Y_train <- mnist$Y_train

X_test <- mnist$X_test

Y_test <- mnist$Y_test

	 6.	 Reshape the dataset.

Given that we are performing a normal neural network operation,

our input dataset should be of the dimensions (60000,784),

whereas X_train is of the dimension (60000,28,28):

X_train <- array(X_train, dim = c(dim(X_train)[1], 784))

X_test <- array(X_test, dim = c(dim(X_test)[1], 784))

	 7.	 Scale the datasets:

X_train <- X_train/255

X_test <- X_test/255

	 8.	 Convert the dependent variables (Y_train and Y_test) into

categorical variables:

Y_train <- to_categorical(mnist$Y_train, 10)

Y_test <- to_categorical(mnist$Y_test, 10)

Chapter 7 Artificial Neural Network

165

	 9.	 Build a model:

model <- Sequential()

model$add(Dense(units = 1000, input_shape = dim(X_train)[2],

activation = "relu"))

model$add(Dense(10,activation = "softmax"))

model$summary()

	 10.	 Compile the model:

keras_compile(model, loss = 'categorical_crossentropy',

optimizer = Adam(),metrics='categorical_accuracy')

	 11.	 Fit the model:

keras_fit(model, X_train, Y_train,batch_size = 1024,

epochs = 5,verbose = 1, validation_data = list(X_test,

Y_test))

The process we just went through should give us a test dataset

accuracy of ~98%.

�Summary
In this chapter, you learned the following:

•	 Neural network can approximate complex functions (because of the

activation in hidden layers)

•	 A forward and a backward propagation constitute the building blocks

of the functioning of a neural network

•	 Forward propagation helps us in estimating the error, whereas

backward propagation helps in reducing the error

•	 It is always a better idea to scale the input dataset whenever gradient

descent is involved in arriving at the optimal weight values

•	 L1/ L2 regularization helps in avoiding over-fitting by penalizing for

high weight magnitudes

Chapter 7 Artificial Neural Network

167
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_8

CHAPTER 8

Word2vec
Word2vec is a neural network–based approach that comes in very handy in traditional

text mining analysis.

One of the problems with a traditional text mining approach is an issue with the

dimensionality of data. Given the high number of distinct words within a typical text,

the number of columns that are built can become very high (where each column

corresponds to a word, and each value in the column specifies whether the word exists

in the text corresponding to the row or not—more about this later in the chapter).

Word2vec helps represent data in a better way: words that are similar to each other have

similar vectors, whereas words that are not similar to each other have different vectors. In this

chapter, we will explore the different ways in which word vectors are calculated.

To get an idea of how Word2vec can be useful, let’s explore a problem. Let’s say we

have two input sentences:

Intuitively, we know that enjoy and like are similar words. However, in traditional text

mining, when we one-hot-encode the words, our output looks like this:

Notice that one-hot encoding results in each word being assigned a column. The

major issue with one-hot-encoding is that the eucledian distance between the words

168

{I, enjoy} is the same as the distance between the words {enjoy, like}. But we know that

the distance between {I, enjoy} should be greater than the distance between {enjoy, like}

because enjoy and like are more synonymous to each other.

�Hand-Building a Word Vector
Before building a word vector, we’ll formulate the hypothesis as follows:

“Words that are related will have similar words surrounding them.”

For example, the words king and prince will have similar words surrounding them more

often than not. Essentially, the context (the surrounding words) of the words would be similar.

With this hypothesis, let’s look at each word as output and all the context words

(surrounding words) as input. Thus, our dataset translates as follows (available as

“word2vec.xlsx” in github):

By using the context words as input, we are trying to predict the given word as output.

A vectorized form of the preceding input and output words looks like this (note that,

the column names {I, enjoy, playing, TT, like} are given in row 3 only for reference):

Chapter 8 Word2vec

169

Note that, given the input words—{enjoy, playing, TT}—the vector form is {0,1,1,1,0}

because the input doesn’t contain both I and like, so the first and last indices are 0 (note

the one-hot encoding done in the first page).

For now, let’s say we would like to convert the 5-dimensional input vector into a

3-dimensional vector. In such a scenario, our hidden layer has three neurons associated

with it. Our neural network would look like Figure 8-1.

Input Vector

0
0
1
0
0

5 positions

Hidden Layer
Linear Neurons

Output Layer
Softmax Classifier

3 units

5 units

Figure 8-1.  Our neural network

Chapter 8 Word2vec

170

The dimensions of each layer are as follows:

Layer Size Commentary

Input layer 8 × 5 Because there are 8 inputs and 5 indices (unique words)

Weights at hidden layer 5 × 3 Because there are 5 inputs each to the 3 neurons

Output of hidden layer 8 × 3 Matrix multiplication of input and hidden layer

Weights from hidden to

output

3 × 5 3 output columns from hidden layer mapped to the 5

original output columns

Output layer 8 × 5 Matrix multiplication between output of hidden layer and

the weights from hidden to output layer

The following shows how each of these works out:

Note that the input vector is multiplied by a randomly initialized hidden layer weight

matrix to obtain the output of hidden layer. Given that the input is 8 × 5 in size and the

hidden layer is 5 × 3 in size, the output of matrix multiplication is 8 × 3. And, unlike in a

traditional neural network, in the Word2vec approach we don’t apply any activations on

the hidden layer:

Chapter 8 Word2vec

171

Once we have the output of the hidden layer, we multiply them with a matrix of

weights from hidden to output layer. Given that the output of hidden layer is 8 × 3 in size

and the hidden layer to output is 3 × 5 in size, our output layer is 8 × 5. But note that the

output layer has a range of numbers, both positive and negative, as well as numbers that

are >1 or <–1.

Hence, just as we did in neural networks, we pass the numbers through a softmax to

convert them to a number between 0 and 1:

For convenience, I have broken down softmax into two steps:

	 1.	 Apply exponential to the number.

	 2.	 Divide the output of step 1 by the row sum of the output of step 1.

In the preceding output, we see that the output of the first column is very close to 1 in

the first row, and the output of the second column is 0.5 in the second row and so on.

Once we obtain the predictions, we compare them with the actuals to calculate the

cross entropy loss across the whole batch, as follows:

Cross entropy loss = –∑ Actual value × Log (probability, 2)

Chapter 8 Word2vec

172

Now that we’ve calculated the overall cross entropy error, our task is to reduce the

overall cross entropy error by varying the weights that are randomly initialized, using

an optimizer of choice. Once we arrive at the optimal weight values, we are left with the

hidden layer that looks like this:

Now that we have the input words and the hidden layer weights calculated, the

words can now be represented in a lower dimension by multiplying the input word with

the hidden layer representation.

The matrix multiplication of the input layer (1 × 5 for each word) and hidden layer

(5 × 3 weights) is a vector of size (1 × 3):

If we now consider the words {enjoy, like} we should notice that the vectors of the

two words are very similar to each other (that is, the distance between the two words is

small).

This way, we have converted the original input one-hot-encoded vector, where

the distance between {enjoy, like} was high to the transformed word vector, where the

distance between {enjoy, like} is small.

Chapter 8 Word2vec

173

�Methods of Building a Word Vector
The method we have adopted in building a word vector in the previous section is called

the continuous bag of words (CBOW) model.

Take a sentence “The quick brown fox jumped over the dog.” The CBOW model

handles that sentence like this:

	 1.	 Fix a window size. That is, select n words to the left and right of a

given word. For example, let’s say the window size is 2 words each

to the left and right of the given word.

	 2.	 Given the window size, the input and output vectors would look

like this:

Input words Output word

{The, quick, fox, jumped} {brown}

{quick, brown, jumped, over} {fox}

{brown, fox, over, the} {jumped}

{fox, jumped, the, dog} {over}

Another approach to build a word vector is called the skip-gram model. In the

skip-gram model, the preceding step is reversed, as follows:

Input words Output word

{brown} {The, quick, fox, jumped}

{fox} {quick, brown, jumped, over}

{jumped} {brown, fox, over, the}

{over} {fox, jumped, the, dog}

The approach to arrive at the hidden layer vectors remains the same, irrespective of

whether it is a skip-gram model or a CBOW model.

Chapter 8 Word2vec

174

�Issues to Watch For in a Word2vec Model
For the way of calculation discussed so far, this section looks at some of the common

issues we might be facing.

�Frequent Words
Typical frequent words like the appear quite often in vocabulary. In such cases, the

output has the words like the occurring a lot more often. If not treated, this might result

in a majority of the output being the most frequent words, like the, more than other

words. We need to have a way to penalize for the number of times a frequently occurring

word can be seen in the training dataset.

In a typical Word2vec analysis, the way we penalize for frequently occurring words is

as follows. The probability of selecting a word is calculated like this:

	

P w
z w

z wi
i

i

() = ()
+

æ

è
çç

ö

ø
÷÷
×
()0 001

1
0 001

.

.

	

z(w) is the number of times a word has occurred over the total occurrences of any

word. A plot of that formula reveals the curve in Figure 8-2.

Note that as z(w) (x-axis) increases, the probability of selection (y-axis) decreases

drastically.

Figure 8-2.  The resultant curve

Chapter 8 Word2vec

175

�Negative Sampling
Let’s assume there are a total of 10,000 unique words in our dataset—that is, each vector

is of 10,000 dimensions. Let’s also assume that we are creating a 300-dimensional vector

from the original 10,000-dimensional vector. This means, from the hidden layer to the

output layer, there are a total of 300 × 10,000 = 3,000,000 weights.

One of the major issues with such a high number of weights is that it might result in

overfitting on top of the data. It also might result in a longer training time.

Negative sampling is one way to overcome this problem. Let’s say that instead of

checking for all 10,000 dimensions, we pick the index at which the output is 1 (the correct

label) and five random indices where the label is 0. This way, we are reducing the number

of weights to be updated in a single iteration from 3 million to 300 × 6 = 1800 weights.

I said that the selection of negative indices is random, but in actual implementation

of Word2vec, the selection is based on the frequency of a word when compared to the

other words. The words that are more frequent have a higher chance of getting selected

when compared to words that are less frequent.

The probability of selecting five negative words is as follows:

	

P w
f w

f w
i

i

j

n

j

() = ()

()()
=
å

3 4

0

3 4

/

/

	

f(w) is the frequency of a given word.

Once the probabilities of each word are calculated, the word selection happens as

follows: Higher-frequency words are repeated more often, and lower-frequent words

are repeated less often and are stored in a table. Given that high-frequency words are

repeated more often, the chance of them getting picked up is higher when a random

selection of five words is made from the table.

�Implementing Word2vec in Python
Word2vec can be implemented in Python using the gensim package (the Python

implementation is available in github as “word2vec.ipynb”).

Chapter 8 Word2vec

176

The first step is to initialize the package:

import nltk

import gensim

import pandas as pd

Once we import the package, we are expected to provide the parameters discussed in

previous sections:

import logging

logging.basicConfig(format=’%(asctime)s : %(levelname)s : %(message)s’,\

 level=logging.INFO)

Set values for various parameters

num_features = 100 # Word vector dimensionality

min_word_count = 50 # Minimum word count

num_workers = 4 # Number of threads to run in parallel

context = 9 # Context window size

downsampling = 1e-4 # Downsample setting for frequent words

•	 logging essentially helps us in tracking the extent to which the word

vector calculation is complete.

•	 num_features is the number of neurons in the hidden layer.

•	 min_word_count is the cut-off of the frequency of words that get

accepted for the calculation.

•	 context is the window size

•	 downsampling helps in assigning a lower probability of picking the

more frequent words.

Chapter 8 Word2vec

177

The input vocabulary for the model should be like the following:

Note that all the input sentences are tokenized.

A Word2vec model is trained as follows:

from gensim.models import word2vec

print(“Training model...”)

w2v_model = word2vec.Word2Vec(t2, workers=num_workers,

 size=num_features, min_count = min_word_count,

 window = context, sample = downsampling)

Once a model is trained, the vector of weights for any word in the vocabulary that

meets the specified criterion can be obtained as follows:

model['word'] # replace the "word" with the word of your interest

Similarly, the most similar word to a given word can be obtained like this:

model.most_similar('word')

Chapter 8 Word2vec

178

�Summary
In this chapter, you learned the following:

•	 Word2vec is an approach that can help convert text words into

numeric vectors.

•	 This acts as a powerful first step for multiple approaches

downstream—for example, one can use the word vectors in building

a model.

•	 Word2vec comes up with the vectors using one the CBOW or skip-

gram model, which have a neural network architecture that helps in

coming up with vectors.

•	 The hidden layer in neural network is the key to generating the word

vectors.

Chapter 8 Word2vec

179
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_9

CHAPTER 9

Convolutional
Neural Network
In Chapter 7, we looked at a traditional neural network (NN). One of the limitations of a

traditional NN is that it is not translation invariant—that is, a cat image on the upper

right-hand corner of an image would be treated differently from an image that has a cat

in the center of the image. Convolutional neural networks (CNNs) are used to deal with

such issues.

Given that a CNN can deal with translation in images, it is considered a lot more useful

and CNN architectures are in fact among the current state-of-the-art techniques in object

classification/detection.

In this chapter, you will learn the following:

•	 Working details of CNN

•	 How CNN improves over the drawbacks of neural network

•	 The impact of convolutions and pooling on addressing image

translation issues

•	 How to implement CNN in Python, and R

To better understand the need for CNN further, let’s start with an example. Say we

would like to classify whether an image has a vertical line in it or not (maybe to tell if the

image represents 1 or not). For simplicity’s sake, let’s assume the image is a 5 × 5 image.

Some of the multiple ways in which a vertical line (or a 1) can be written are as follows:

180

We can also check the different ways in which the digit 1 is written in a MNIST

dataset. An image of pixels highlighted for a written 1 is shown in Figure 9-1.

Figure 9-1.  Image of pixels corresponding to images with label 1

In the image, the redder the pixel, the more often have people written on top of

it; bluer means the pixel had been written on fewer times. The pixel in middle is the

reddest, quite likely because most people would be writing over that pixel, regardless of

the angle they use to write a 1—a vertical line or slanted towards the left or right. In the

following section, you would notice that the neural network predictions are not accurate

when the image is translated by a few units. In a later section, we will understand how

CNN addresses the problem of image translation.

�The Problem with Traditional NN
In the scenario just mentioned, a traditional neural network would highlight the image

as a 1 only if the pixels around the middle are highlighted and the rest of the pixels in the

image are not highlighted (since most people have highlighted the pixels in the middle).

To better understand this problem, let’s go through the code we went through in

Chapter 7 (code available as “issue with traditional NN.ipynb” in github):

	 1.	 Download the dataset and extract the train and test datasets:

from keras.datasets import mnist

import matplotlib.pyplot as plt

%matplotlib inline

Chapter 9 Convolutional Neural Network

181

load (downloaded if needed) the MNIST dataset

(X_train, y_train), (X_test, y_test) = mnist.load_data()

plot 4 images as gray scale

plt.subplot(221)

plt.imshow(X_train[0], cmap=plt.get_cmap('gray'))

plt.subplot(222)

plt.imshow(X_train[1], cmap=plt.get_cmap('gray'))

plt.subplot(223)

plt.imshow(X_train[2], cmap=plt.get_cmap('gray'))

plt.subplot(224)

plt.imshow(X_train[3], cmap=plt.get_cmap('gray'))

show the plot

plt.show()

	 2.	 Import the relevant packages:

import numpy as np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Flatten

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.utils import np_utils

from keras import backend as K

	 3.	 Fetch the training set corresponding to the label 1 only:

X_train1 = X_train[y_train==1]

Chapter 9 Convolutional Neural Network

182

	 4.	 Reshape and normalize the dataset:

num_pixels = X_train.shape[1] * X_train.shape[2]

X_train = X_train.reshape(X_train.shape[0],num_pixels

).astype('float32')

X_test = X_test.reshape(X_test.shape[0],num_pixels).

astype('float32')

X_train = X_train / 255

X_test = X_test / 255

	 5.	 One-hot-encode the labels:

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

num_classes = y_train.shape[1]

	 6.	 Build a model and run it:

model = Sequential()

model.add(Dense(1000, input_dim=num_pixels, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=[''accuracy'])

model.fit(X_train, y_train, validation_data=(X_test, y_test),

epochs=5, batch_size=1024, verbose=1)

Let’s plot what an average 1 label looks like:

pic=np.zeros((28,28))

pic2=np.copy(pic)

for i in range(X_train1.shape[0]):

 pic2=X_train1[i,:,:]

Chapter 9 Convolutional Neural Network

183

 pic=pic+pic2

pic=(pic/X_train1.shape[0])

plt.imshow(pic)

Figure 9-2 shows the result.

Figure 9-2.  Average 1 image

�Scenario 1
In this scenario, a new image is created (Figure 9-3) in which the original image is

translated by 1 pixel toward the left:

for i in range(pic.shape[0]):

 if i<20:

 pic[:,i]=pic[:,i+1]

plt.imshow(pic)

Figure 9-3.  Average 1 image translated by 1 pixel to the left

Chapter 9 Convolutional Neural Network

184

Let’s go ahead and predict the label of the image in Figure 9-3 using the built model:

model.predict(pic.reshape(1,784))

We see the wrong prediction of 8 as output.

�Scenario 2
A new image is created (Figure 9-4) in which the pixels are not translated from the

original average 1 image:

pic=np.zeros((28,28))

pic2=np.copy(pic)

for i in range(X_train1.shape[0]):

 pic2=X_train1[i,:,:]

 pic=pic+pic2

pic=(pic/X_train1.shape[0])

plt.imshow(pic)

Figure 9-4.  Average 1 image

The prediction of this image is as follows:

model.predict(pic.reshape(1,784))

We see a correct prediction of 1 as output.

Chapter 9 Convolutional Neural Network

185

�Scenario 3
A new image is created (Figure 9-5) in which the pixels of the original average 1 image

are shifted by 1 pixel to the right:

pic=np.zeros((28,28))

pic2=np.copy(pic)

for i in range(X_train1.shape[0]):

 pic2=X_train1[i,:,:]

 pic=pic+pic2

pic=(pic/X_train1.shape[0])

pic2=np.copy(pic)

for i in range(pic.shape[0]):

 if ((i>6) and (i<26)):

 pic[:,i]=pic2[:,(i-1)]

plt.imshow(pic)

Figure 9-5.  Average 1 image translated by 1 pixel to the right

Let us go ahead and predict the label of the above image using the built model:

model.predict(pic.reshape(1,784))

We have a correct prediction of 1 as output.

Chapter 9 Convolutional Neural Network

186

�Scenario 4
A new image is created (Figure 9-6) in which the pixels of the original average 1 image

are shifted by 2 pixels to the right:

pic=np.zeros((28,28))

pic2=np.copy(pic)

for i in range(X_train1.shape[0]):

 pic2=X_train1[i,:,:]

 pic=pic+pic2

pic=(pic/X_train1.shape[0])

pic2=np.copy(pic)

for i in range(pic.shape[0]):

 if ((i>6) and (i<26)):

 pic[:,i]=pic2[:,(i-2)]

plt.imshow(pic)

Figure 9-6.  Average 1 image translated by 2 pixels to the right

We’ll predict the label of the image using the built model:

model.predict(pic.reshape(1,784))

And we see a wrong prediction of 3 as output.

From the preceding scenarios, you can see that traditional NN fails to produce good

results the moment there is translation in the data. These scenarios call for a different

way of dealing with the network to address translation variance. And this is where a

convolutional neural network (CNN) comes in handy.

Chapter 9 Convolutional Neural Network

187

�Understanding the Convolutional in CNN
You already have a good idea of how a typical neural network works. In this section, let’s

explore what the word convolutional means in CNN. A convolution is a multiplication

between two matrices, with one matrix being big and the other smaller.

To see convolution, consider the following example.

Matrix A is as follows:

Matrix B is as follows:

While performing convolution, think of it as sliding the smaller matrix over the

bigger matrix: we can potentially come up with nine such multiplications as the

smaller matrix is slid over the entire area of the bigger matrix. Note that it is not matrix

multiplication:

	 1.	 {1,2,5,6} of the bigger matrix is multiplied with {1,2,3,4} of the

smaller matrix.

1 × 1 + 2 × 2 + 5 × 3 + 6 × 4 = 44

	 2.	 {2,3,6,7} of the bigger matrix is multiplied with {1,2,3,4} of the

smaller matrix:

2 × 1 + 3 × 2 + 6 × 3 + 7 × 4 = 54

	 3.	 {3,4,7,8} of the bigger matrix is multiplied with {1,2,3,4} of the

smaller matrix:

3 × 1 + 4 × 2 + 7 × 3 + 8 × 4 = 64

Chapter 9 Convolutional Neural Network

188

	 4.	 {5,6,9,10} of the bigger matrix is multiplied with {1,2,3,4} of the

smaller matrix:

5 × 1 + 6 × 2 + 9 × 3 + 10 × 4 = 84

	 5.	 {6,7,10,11} of the bigger matrix is multiplied with {1,2,3,4} of the

smaller matrix:

6 × 1 + 7 × 2 + 10 × 3 + 11 × 4 = 94

	 6.	 {7,8,11,12} of the bigger matrix is multiplied with {1,2,3,4} of the

smaller matrix:

7 × 1 + 8 × 2 + 11 × 3 + 12 × 4 = 104

	 7.	 {9,10,13,14} of the bigger matrix is multiplied with {1,2,3,4} of the

smaller matrix:

9 × 1 + 10 × 2 + 13 × 3 + 14 × 4 = 124

	 8.	 {10,11,14,15} of the bigger matrix is multiplied with {1,2,3,4} of the

smaller matrix:

10 × 1 + 11 × 2 + 14 × 3 + 15 × 4 = 134

	 9.	 {11,12,15,16} of the bigger matrix is multiplied with {1,2,3,4} of the

smaller matrix:

11 × 1 + 12 × 2 + 15 × 3 + 16 × 4 = 144

The result of the preceding steps would be a matrix, as follows:

Conventionally, the smaller matrix is called a filter or kernel, and the smaller matrix

values are arrived at statistically through gradient descent (more on gradient descent a

little later). The values within the filter can be considered as the constituent weights.

Chapter 9 Convolutional Neural Network

189

�From Convolution to Activation
In a traditional NN, a hidden layer not only multiplies the input values by the weights,

but also applies a non-linearity to the data—it passes the values through an activation

function. A similar activity happens in a typical CNN too, where the convolution

is passed through an activation function. CNN supports the traditional activations

functions we have seen so far: sigmoid, ReLU, Tanh.

For the preceding output, note that the output remains the same when passed

through a ReLU activation function, as all the numbers are positive.

�From Convolution Activation to Pooling
So far, we have looked at how convolutions work. In this section, we will consider the

typical next step after a convolution: pooling.

Let’s say the output of the convolution step is as follows (we are not considering the

preceding example—this is a new example to illustrate pooling, and the rationale will be

explained in a later section):

In this case, the output of a convolution step is a 2 × 2 matrix. Max pooling considers

the 2 × 2 block and gives the maximum value as output—similarly if the output of a

convolution step is a bigger matrix, as follows:

Max pooling divides the big matrix into non-overlapping blocks of size 2 × 2 each,

as follows:

Chapter 9 Convolutional Neural Network

190

From each block, only the element that has the highest value is chosen. So, the

output of the max pooling operation on the preceding matrix would be the following:

Note that, in practice, it is not necessary to always have a 2 × 2 filter.

The other types of pooling involved are sum and average. Again, in practice we see a

lot of max pooling when compared to other types of pooling.

�How Do Convolution and Pooling Help?
One of the drawbacks of traditional NN in the MNIST example we looked at earlier

was that each pixel is associated with a distinct weight. Thus, if an adjacent pixel other

than the original pixel became highlighted, the output would not be very accurate (the

example of scenario 1, where the 1s were slightly to the left of the middle).

This scenario is now addressed, as the pixels share weights that are constituted

within each filter. All the pixels are multiplied by all the weights that constitute a filter,

and in the pooling layer only the values that are activated the highest are chosen. This

way, regardless of whether the highlighted pixel is at the center or is slightly away from

the center, the output would more often than not be the expected value. However, the

issue remains the same when the highlighted pixels are far away from the center.

�Creating CNNs with Code
From the preceding traditional NN scenario, we saw that a NN does not work if the pixels

are translated by 1 unit to the left. Practically, we can consider the convolution step as

identifying the pattern and pooling step as the one that results in translation variance.

N pooling steps result in at least N units of translation invariance. Consider the

following example, where we apply one pooling step after convolution (code available as

“improvement using CNN.ipynb” in github):

	 1.	 Import and reshape the data to fit a CNN:

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(X_train.shape[0],X_train.shape[1],

X_train.shape[1],1).astype('float32')

Chapter 9 Convolutional Neural Network

191

X_test = X_test.reshape(X_test.shape[0],X_test.shape[1],X_test.

shape[1],1).astype('float32')

X_train = X_train / 255

X_test = X_test / 255

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

num_classes = y_test.shape[1]

Step 2: Build a model

model = Sequential()

model.add(Conv2D(10, (3,3), input_shape=(28, 28,1),

activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(1000, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

model.summary()

Chapter 9 Convolutional Neural Network

192

	 2.	 Fit the model:

model.fit(X_train, y_train, validation_data=(X_test, y_test),

epochs=5, batch_size=1024, verbose=1)

For the preceding convolution, where one convolution is followed by one pooling

layer, the output prediction works out well if the pixels are translated by 1 unit to the left

or right, but does not work when the pixels are translated by more than 1 unit (Figure 9-7):

pic=np.zeros((28,28))

pic2=np.copy(pic)

for i in range(X_train1.shape[0]):

 pic2=X_train1[i,:,:]

 pic=pic+pic2

pic=(pic/X_train1.shape[0])

for i in range(pic.shape[0]):

 if i<20:

 pic[:,i]=pic[:,i+1]

plt.imshow(pic)

Figure 9-7.  Average 1 image translated by 1 pixel to the left

Chapter 9 Convolutional Neural Network

193

Let’s go ahead and predict the label of Figure 9-7:

model.predict(pic.reshape(1,28,28,1))

We see a correct prediction of 1 as output.

In the next scenario (Figure 9-8), we move the pixels by 2 units to the left:

pic=np.zeros((28,28))

pic2=np.copy(pic)

for i in range(X_train1.shape[0]):

 pic2=X_train1[i,:,:]

 pic=pic+pic2

pic=(pic/X_train1.shape[0])

for i in range(pic.shape[0]):

 if i<20:

 pic[:,i]=pic[:,i+2]

plt.imshow(pic)

Figure 9-8.  Average 1 image translated by 2 pixels to the left

Let’s predict the label of Figure 9-8 per the CNN model we built earlier:

model.predict(pic.reshape(1,28,28,1))

We have an incorrect prediction when the image is translated by 2 pixels to the left.

Chapter 9 Convolutional Neural Network

194

Note that when the number of convolution pooling layers in the model is the same as

the amount of translation in an image, the prediction is correct. But prediction is more

likely to be incorrect if there are less convolution pooling layers when compared to the

translation in image.

�Working Details of CNN
Let’s build toy CNN code in Python and then implement the outputs in Excel so that it

reinforces our understanding (code available as “CNN simple example.ipynb” in github):

	 1.	 Import the relevant packages:

import relevant packages

from keras.datasets import mnist

import matplotlib.pyplot as plt

%matplotlib inline

import numpy as np

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.utils import np_utils

from keras.layers import Flatten

from keras.layers.convolutional import Conv2D

from keras.layers.convolutional import MaxPooling2D

from keras.utils import np_utils

from keras import backend as K

from keras import regularizers

	 2.	 Create a simple dataset:

Create a simple dataset

X_train=np.array([[[1,2,3,4],[2,3,4,5],[5,6,7,8],[1,3,4,5]],

[[-1,2,3,-4],[2,-3,4,5],[-5,6,-7,8],[-1,-3,-4,-5]]])

y_train=np.array([0,1])

Chapter 9 Convolutional Neural Network

195

	 3.	 Normalize the inputs by dividing each value with the maximum

value in the dataset:

X_train = X_train / 8

	 4.	 One-hot-encode the outputs:

y_train = np_utils.to_categorical(y_train)

	 5.	 Once the simple dataset of just two inputs that are 4 × 4 in size and

the two outputs are in place, let’s first reshape the input into the

required format (which is: number of samples, height of image,

width of image, number of channels of the image):

X_train = X_train.reshape(X_train.shape[0],X_train.shape[1],

X_train.shape[1],1).astype('float32')

	 6.	 Build a model:

model = Sequential()

model.add(Conv2D(1, (3,3), input_shape=(4,4,1),

activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(10, activation='relu'))

model.add(Dense(2, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

model.summary()

Chapter 9 Convolutional Neural Network

196

	 7.	 Fit the model:

model.fit(X_train, y_train, epochs=100, batch_size=2, verbose=1)

The various layers of the preceding model are as follows:

model.layers

Chapter 9 Convolutional Neural Network

197

The name and shape corresponding to various layers are as follows:

names = [weight.name for layer in model.layers for weight in layer.weights]

weights = model.get_weights()

for name, weight in zip(names, weights):

 print(name, weight.shape)

The weights corresponding to a given layer can be extracted as follows:

model.layers[0].get_weights()

Chapter 9 Convolutional Neural Network

198

The prediction for the first input can be calculated as follows:

model.predict(X_train[0].reshape(1,4,4,1))

Now that we know the probability of 0 for the preceding prediction is 0.89066, let’s

validate our intuition of CNN so far by matching the preceding prediction in Excel

(available as “CNN simple example.xlsx” in github).

The first input and its corresponding scaled version, along with convolution weights

and bias (that came out from the model), are as follows:

The output of convolution is as follows (please check cells L4 to M5 in the ‘CNN

simple example.xlsx’ file):

Chapter 9 Convolutional Neural Network

199

The calculation of convolution is per the following formula:

After the convolution layer, we perform the max pooling as follows:

Once the pooling is performed, all the outputs are flattened (per the specification in

our model). However, given that our pooling layer has only one output, flattening would

also result in a single output.

In the next step, the flattened layer is connected to the hidden dense layer (which in

our model specification has ten neurons). The weights and bias corresponding to each

neuron are as follows:

Chapter 9 Convolutional Neural Network

200

The matrix multiplication and the ReLU activation after the multiplication would be

as follows:

The formulas for the preceding output are as follows:

Chapter 9 Convolutional Neural Network

201

Now let’s look at the calculations from hidden layer to output layer. Note that

there are two outputs given for each input (output for every row has two columns in

dimension: probability of 0 and probability of 1). The weights from hidden layer to

output layer are as follows:

Now that each neuron is connected to two weights (where each weight gives its

connection to the two outputs), let’s look at the calculation from hidden to output layer:

Chapter 9 Convolutional Neural Network

202

The calculation of the output layer is as follows:

Now that we have some output values, let’s calculate the softmax part of the output:

The output would now be exactly the same as what we saw in the output from the

keras model:

Thus, we have a validation about the intuition laid out in the previous sections.

Chapter 9 Convolutional Neural Network

203

�Deep Diving into Convolutions/Kernels
To see how kernels/filters help, let’s go through another scenario. From the MNIST

dataset, let’s modify the objective in such a way that we are only interested in predicting

whether an image is a 1 or not a 1:

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(X_train.shape[0],X_train.shape[1],X_train.

shape[1],1).astype('float32')

X_test = X_test.reshape(X_test.shape[0],X_test.shape[1],X_test.shape[1],1).

astype('float32')

X_train = X_train / 255

X_test = X_test / 255

X_train1 = X_train[y_train==1]

y_train = np.where(y_train==1,1,0)

y_test = np.where(y_test==1,1,0)

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

num_classes = y_test.shape[1]

We will come up with a simple CNN where there are only two convolution filters:

model = Sequential()

model.add(Conv2D(2, (3,3), input_shape=(28, 28,1), activation='relu'))

model.add(Flatten())

model.add(Dense(1000, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

model.summary()

Chapter 9 Convolutional Neural Network

204

Now we’ll go ahead and run the model as follows:

model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5,

batch_size=1024, verbose=1)

We can extract the weights corresponding to the filters in the following way:

model.layers[0].get_weights()

Let’s manually convolve and apply the activation by using the weights derived in the

preceding step (Figure 9-9):

from scipy import signal

from scipy import misc

import numpy as np

import pylab

for j in range(2):

 gradd=np.zeros((30,30))

 for i in range(6000):

Chapter 9 Convolutional Neural Network

205

 �grad = signal.convolve2d(X_train1[i,:,:,0], model.layers[0].get_

weights()[0].T[j][0])+model.layers[0].get_weights()[1][j]

 grad = np.where(grad<0,0,grad)

 gradd=grad+gradd

 grad2=np.where(gradd<0,0,gradd)

 pylab.imshow(grad2/6000)

 pylab.gray()

 pylab.show()

In the figure, note that the filter on the left activates a 1 image a lot more than the

filter on the right. Essentially, the first filter helps in predicting label 1 more, and the

second filter augments in predicting the rest.

Figure 9-9.  Average filter activations when 1 label images are passed

�From Convolution and Pooling to Flattening: Fully
Connected Layer
The outputs we have seen so far until pooling layer are images. In traditional neural

network, we would consider each pixel as an independent variable. This is precisely

what we are going to perform in the flattening process.

Each pixel of the image is unrolled, and so the process is called flattening. For

example, the output image after convolution and pooling looks like this:

Chapter 9 Convolutional Neural Network

206

The output of flattening looks like this:

�From One Fully Connected Layer to Another
In a typical neural network, the input layer is connected to the hidden layer. In a similar

manner, in a CNN the fully connected layer is connected to another fully connected layer

that typically has more units.

�From Fully Connected Layer to Output Layer
Similar to the traditional NN architecture, the hidden layer is connected to the output

layer and is passed through a sigmoid activation to get the output as a probability. An

appropriate loss function is also chosen, depending on the problem being solved.

�Connecting the Dots: Feed Forward Network
Here is a recap of the steps we have performed so far:

	 1.	 Convolution

	 2.	 Pooling

	 3.	 Flattening

	 4.	 Hidden layer

	 5.	 Calculating output probability

A typical CNN looks is shown in Figure 9-10 (the most famous—the one developed

by the inventor himself, LeNet, as an example):

The subsample written in Figure 9-10 is equivalent to the max pooling step we saw earlier.

Chapter 9 Convolutional Neural Network

207

�Other Details of CNN
In Figure 9-10, we see that the conv1 step has six channels or convolutions of the original

image. Let’s look at this in detail:

input outputconv1 conv2pool1 pool2 hidden4

Convolution

Subsample

SubsampleConvolution
Convolution

Full
Connection

Figure 9-10.  A LeNet

	 1.	 Let’s say we have a greyscale image that is 28 × 28 in dimension.

Six filters that are 3 × 3 in size would generate images that are

26 × 26 in size. Thus, we are left with six images of size 26 × 26.

	 2.	 A typical color image would have three channels (RGB). For

simplicity, we can assume that the output image we had in step

1 has six channels - one each for the six filters (though we can’t

name them as RGB like the three-channel version). In this step,

we would perform max pooling on each of the six channels

separately. This would result in six images (channels) that are

13 × 13 in dimension.

	 3.	 In the next convolution step, we multiply the six channels of

13 × 13 images with weights of dimensions 3 × 3 × 6. That’s a

3-dimensional weight matrix convolving over a 3-dimensional

image (where the image has dimensions 13 × 13 × 6). This would

result in an image of 11 × 11 in dimension for each filter.

Let’s say we’ve considered ten different weight matrices (cubes, to be

precise). This would result in an image that is 11 × 11 × 10 in dimension.

	 4.	 Max pooling on each of the 11 × 11 images (which are ten in number)

would result in a 5 × 5 image. Note that, when the max pooling is

Chapter 9 Convolutional Neural Network

208

performed on an image that has odd number of dimensions, pooling

gives us the rounded-down image—that is, 11/2 is rounded down to 5.

A stride is the amount by which the filter that convolves over the original image

moves from one step to the next step. For example, if the stride value is 2, the distance

between 2 consecutive convolutions is 2 pixels. When the stride value is 2, the

multiplication would happen as follows, where A is the bigger matrix and B is the filter:

The first convolution would be between:

The second convolution would be between:

The third convolution would be between:

Chapter 9 Convolutional Neural Network

209

The final convolution would be between:

Note that the output of the convolution is a 2 × 2 matrix when the stride is 2 for the

matrices of the given dimensions here.

PADDING

Note that the size of the resulting image is reduced when a convolution is performed on top of

it. One way to get rid of the size-reduction issue is to pad the original image with zeroes on the

four borders. This way, a 28 × 28 image would be translated into a 30 × 30 image. Thus, when

the 30 × 30 image is convolved by a 3 × 3 filter, the resulting image would be a 28 × 28 image.

�Backward Propagation in CNN
Backward propagation in CNN is done in similarly to a typical NN, where the impact of

changing a weight by a small amount on the overall weight is calculated. But in place

of weights, as in NN, we have filters/matrices of weights that need to be updated to

minimize the overall loss.

Sometimes, given that there are typically millions of parameters in a CNN, having

regularization can be helpful. Regularization in CNN can be achieved using the dropout

method or the L1 and L2 regularizations. Dropout is done by choosing not to update

some weights (typically a randomly chosen 20% of total weights) and training the entire

network over the whole number of epochs.

Chapter 9 Convolutional Neural Network

210

�Putting It All Together
The following code implements a three-convolution pooling layer followed by flattening

and a fully connected layer:

 (X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(X_train.shape[0],X_train.shape[1],X_train.

shape[1],1).astype('float32')

X_test = X_test.reshape(X_test.shape[0],X_test.shape[1],X_test.shape[1],1).

astype('float32')

X_train = X_train / 255

X_test = X_test / 255

y_train = np_utils.to_categorical(y_train)

y_test = np_utils.to_categorical(y_test)

num_classes = y_test.shape[1]

In the next step, we build the model, as follows:

model = Sequential()

model.add(Conv2D(32, (3,3), input_shape=(28, 28,1), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3,3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(1000, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

model.summary()

Chapter 9 Convolutional Neural Network

211

Finally, we fit the model, as follows:

model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5,

batch_size=1024, verbose=1)

Note that the accuracy of the model trained using the preceding code is ~98.8%. But

note that although this model works best on the test dataset, an image that is translated

or rotated from the test MNIST dataset would not be classified correctly (In general, CNN

could only help when the image is translated by the number of convolution pooling layers).

That can be verified by looking at the prediction when the average 1 image is translated

by 2 pixels to the left once, and in another scenario, 3 pixels to the left, as follows:

pic=np.zeros((28,28))

pic2=np.copy(pic)

for i in range(X_train1.shape[0]):

 pic2=X_train1[i,:,:,0]

 pic=pic+pic2

pic=(pic/X_train1.shape[0])

for i in range(pic.shape[0]):

 if i<20:

 pic[:,i]=pic[:,i+2]

model.predict(pic.reshape(1,28,28,1))

Chapter 9 Convolutional Neural Network

212

Note that, in this case, where the image is translated by 2 units to the left, the

predictions are accurate:

pic=np.zeros((28,28))

pic2=np.copy(pic)

for i in range(X_train1.shape[0]):

 pic2=X_train1[i,:,:,0]

 pic=pic+pic2

pic=(pic/X_train1.shape[0])

for i in range(pic.shape[0]):

 if i<20:

 pic[:,i]=pic[:,i+3]

model.predict(pic.reshape(1,28,28,1))

Note that here, when the image is translated by more pixels than convolution pooling

layers, the prediction is not accurate. This issue is solved by using data augmentation,

the topic of the next section.

�Data Augmentation
Technically, a translated image is the same as a new image that is generated from the original

image. New data can be generated by using the ImageDataGenerator function in keras:

from keras.preprocessing.image import ImageDataGenerator

shift=0.2

datagen = ImageDataGenerator(width_shift_range=shift)

datagen.fit(X_train)

i=0

for X_batch,y_batch in datagen.flow(X_train,y_train,batch_size=100):

Chapter 9 Convolutional Neural Network

213

 i=i+1

 print(i)

 if(i>500):

 break

 X_train=np.append(X_train,X_batch,axis=0)

 y_train=np.append(y_train,y_batch,axis=0)

print(X_train.shape)

From that code, we have generated 50,000 random shufflings from our original data,

where the pixels are shuffled by 20%.

As we plot the image of 1 now (Figure 9-11), note that there is a wider spread for

the image:

y_train1=np.argmax(y_train,axis=1)

X_train1=X_train[y_train1==1]

pic=np.zeros((28,28))

pic2=np.copy(pic)

for i in range(X_train1.shape[0]):

 pic2=X_train1[i,:,:,0]

 pic=pic+pic2

pic=(pic/X_train1.shape[0])

plt.imshow(pic)

Figure 9-11.  Average 1 post data augmentation

Chapter 9 Convolutional Neural Network

214

Now the predictions will work even when we don’t do convolution pooling for

the few pixels that are to the left or right of center. However, for the pixels that are far

away from the center, correct predictions will come once the model is built using the

convolution and pooling layers.

So, data augmentation helps in further generalizing for variations of the image

across the image boundaries when using the CNN model, even with fewer convolution

pooling layers.

�Implementing CNN in R
To implement CNN in R, we will leverage the same package we used to implement

neural network in R—kerasR (code available as “kerasr_cnn_code.r” in github):

Load, split, transform and scale the MNIST dataset

mnist <- load_mnist()

X_train <- array(mnist$X_train, dim = c(dim(mnist$X_train), 1)) / 255

Y_train <- to_categorical(mnist$Y_train, 10)

X_test <- array(mnist$X_test, dim = c(dim(mnist$X_test), 1)) / 255

Y_test <- to_categorical(mnist$Y_test, 10)

Build the model

model <- Sequential()

model$add(Conv2D(filters = 32, kernel_size = c(3, 3),input_shape = c(28, 28, 1)))

model$add(Activation("relu"))

model$add(MaxPooling2D(pool_size=c(2, 2)))

model$add(Flatten())

model$add(Dense(128))

model$add(Activation("relu"))

model$add(Dense(10))

model$add(Activation("softmax"))

Compile and fit the model

Chapter 9 Convolutional Neural Network

215

keras_compile(model, loss = 'categorical_crossentropy', optimizer =

Adam(),metrics='categorical_accuracy')

keras_fit(model, X_train, Y_train, batch_size = 1024, epochs = 5, verbose = 1,

validation_data = list(X_test,Y_test))

The preceding code results in an accuracy of ~97%.

�Summary
In this chapter, we saw how convolutions help us identify the structure of interest and

how pooling helps ensure that the image is recognized even when translation happens

in the original image. Given that CNN is able to adapt to image translation through

convolution and pooling, it’s in a position to give better results than the traditional

neural network.

Chapter 9 Convolutional Neural Network

217
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_10

CHAPTER 10

Recurrent Neural Network
In Chapter 9, we looked at how convolutional neural networks (CNNs) improve upon the

traditional neural network architecture for image classification. Although CNNs perform

very well for image classification in which image translation and rotation are taken care

of, they do not necessarily help in identifying temporal patterns. Essentially, one can

think of CNNs as identifying static patterns.

Recurrent neural networks (RNNs) are designed to solve the problem of identifying

temporal patterns.

In this chapter, you will learn the following:

•	 Working details of RNN

•	 Using embeddings in RNN

•	 Generating text using RNN

•	 Doing sentiment classification using RNN

•	 Moving from RNN to LSTM

RNN can be architected in multiple ways. Some of the possible ways are shown in

Figure 10-1.

one to one one to many many to one many to many many to many

Figure 10-1.  RNN examples

218

In Figure 10-1 note the following:

•	 The boxes in the bottom are inputs

•	 The boxes in the middle are hidden layers

•	 The boxes at the top are outputs

An example of the one-to-one architecture shown is a typical neural network that

we have looked at in chapter 7, with a hidden layer between the input and the output

layer. An example of one-to-many RNN architecture would be to input an image and

output the caption of the image. An example of many-to-one RNN architecture might

be a movie review given as input and the movie sentiment (positive, negative or neutral

review) as output. Finally, an example of many-to-many RNN architecture would be

machine translation from one language to another language.

�Understanding the Architecture
Let’s go through an example and look more closely at RNN architecture. Our task is as

follows: “Given a string of words, predict the next word.” We’ll try to predict the word that

comes after “This is an _____”. Let’s say the actual sentence is “This is an example.”

Traditional text mining techniques would solve the problem in the following way:

	 1.	 Encode each word, leaving space for an extra word, if needed:

This: {1,0,0,0}

is: {0,1,0,0}

an: {0,0,1,0}

	 2.	 Encode the sentence:

"This is an": {1,1,1,0}

	 3.	 Create a training dataset:

Input --> {1,1,1,0}

Output --> {0,0,0,1}

	 4.	 Build a model with input and output.

One of the major drawbacks here is that the input representation does not change if

the input sentence is either “this is an” or “an is this” or “this an is”. We know that each of

these is very different and cannot be represented by the same structure mathematically.

Chapter 10 Recurrent Neural Network

219

This realization calls for having a different architecture, one that looks more like

Figure 10-2.

many to one

Figure 10-2.  A change in the architecture

In the architecture shown in Figure 10-2, each of the individual words in the

sentence goes into a separate box among the three input boxes. Moreover, the structure

of the sentence is preserved since “this” gets into the first box, “is” gets into the second

box, and “an” gets into the third box.

The output “example” is expected in the output box at the top.

�Interpreting an RNN
We can think of RNN as a mechanism to hold memory, where the memory is contained

within the hidden layer. This is illustrated in Figure 10-3.

O

V

U

V V V

U U U
W W W

X

h h(t-1) h(t)

X(t)

O(t-1) O(t)

X(t-1)

h(t+1)

O(t+1)

X(t+1)

W
Unfold

Figure 10-3.  Memory in the hidden layer

Chapter 10 Recurrent Neural Network

220

The network on the right in Figure 10-3 is an unrolled version of the network on the

left. The network on the left is a traditional one, with one change: the hidden layer is

connected to itself along with being connected to the input (the hidden layer is the circle

in the figure).

Note that when a hidden layer is connected to itself along with input layer, it is

connected to a “previous version” of the hidden layer and the current input layer. We

can consider this phenomenon of the hidden layer being connect back to itself as the

mechanism by which memory is created in RNN.

The weight U represents the weights that connect the input layer to the hidden layer,

the weight W represents the hidden-layer-to-hidden-layer connection, and the weight V

represents the hidden-layer-to-output-layer connection.

WHY STORE MEMORY?

There is a need to store memory because, in the preceding example and in text generation in

general, the next word does not necessarily rely on the preceding word but the context of the

few words preceding the word to predict.

Given that we are looking at the preceding words, there should be a way to keep them in

memory so that we can predict the next word more accurately. Moreover, we should also have

the memory in order—more often than not, more recent words are more useful in predicting

the next word than the words that are far away from the word being predicted.

�Working Details of RNN
Note that a typical NN has an input layer followed by an activation in the hidden layer

and then a softmax activation at the output layer. RNN is similar, but with memory. Let’s

look at another example: “This is an example”. Given an input “This”, we are expected to

predict “is” and similarly for an input “is”, we are expected to come up with a prediction

of “an” and a prediction of “example” for “an” as input. The dataset is available as “RNN

dimension intuition.xlsx” in github.

Chapter 10 Recurrent Neural Network

221

The encoded input and output words are as follows:

The RNN structure looks like Figure 10-4.

many to one

Figure 10-4.  The RNN structure

Let’s deconstruct the dimensions of each weight matrix associated:

Chapter 10 Recurrent Neural Network

222

wxh is randomly initialized and 4 × 3 in dimension. Each input is 1 × 4 in dimension.

Thus, the hidden layer, which is a matrix multiplication between the input and wxh, is

1 × 3 in dimension for each input row. The expected output is the one-hot encoded

version of the word that comes next to the input word in our sentence. Note that, the

last prediction “blank” is inaccurate because we have all 0s as expected output. Ideally,

we would have a new column in the one-hot encoded version that takes care of all the

unseen words. However, for the sake of understanding the working details of RNN we

will keep it simple with 4 columns in expected output.

As we saw earlier, in RNN, a hidden layer is connected to another hidden layer when

unrolled. Given that a hidden layer is connected to the next hidden layer, the weight

(whh) associated with the connection between the previous hidden layer and the current

hidden layer would be 3 × 3 in dimension, since a 1 × 3 matrix multiplied with

3 × 3 matrix would yield a 1 × 3 matrix. Final hidden layer calculations in the below

picture are explained in subsequent pages.

Note that, wxh and whh are random initializations, whereas the hidden layer and

the final hidden layer are calculated. We will look at how the calculations are done in the

following pages.

Chapter 10 Recurrent Neural Network

223

The calculation for the hidden layer at various time steps is performed as follows:

h z W x W ht
h h

t
h xh

t
hh

t() () () ()= () = +()f f -1

where fh is an activation that is performed (tanh activation in general).

Calculation from the input layer to the hidden layer consists of two components:

•	 Matrix multiplication of the input layer and wxh.

•	 Matrix multiplication of hidden layer and whh.

Final calculation of the hidden layer value at a given time step would be the

summation of the preceding two matrix multiplications and passing the result through a

tanh activation function.

Matrix multiplication of the input layer and wxh is shown here:

The following sections go through the calculation of the hidden layer value at

different time steps.

Chapter 10 Recurrent Neural Network

224

�Time Step 1
The hidden layer value at the first time step would be the value of matrix multiplication

between the input layer and wxh (because there is no hidden layer value in the previous

time step):

�Time Step 2
Starting the second input, the hidden layer consists of the hidden layer component of the

current time step and the hidden layer component coming from the previous time step:

Chapter 10 Recurrent Neural Network

225

�Time Step 3
Similarly, at the third time step, the inputs would be the input at the current time step and

the hidden unit values coming from the previous time step. Note that the hidden unit in

the previous time step (t-1) is influenced by the hidden values coming from (t-2) also.

Similarly, the hidden layer values are calculated at the fourth time step.

Now that we have our hidden layer calculated, we pass it through an activation, just

as we did it in traditional NN:

Given that the output from hidden layer activation is 1 × 3 in size for each input, in

order to get an output of 1 × 4 in size (as the one-hot-encoded version of the expected

output “example” is 4 columns in size), the hidden layer why should be 3 × 4 in dimension:

Chapter 10 Recurrent Neural Network

226

From the intermediate output, we perform the softmax activation as follows:

Chapter 10 Recurrent Neural Network

227

The second step of softmax would be to normalize each cell value to obtain a

probability value:

Once the probabilities are obtained, the loss is calculated by taking the cross entropy

loss between the prediction and actual output.

Finally, we will be minimizing the loss through the combination of forward and

backward propagation epochs in a similar manner as that of NN.

�Implementing RNN: SimpleRNN
To see how RNN is implemented in keras, let’s go through a simplistic example (only to

understand the keras implementation of RNN and then to solidify our understanding by

implementing in Excel): classifying two sentences (which have an exhaustive list of three

words). Through this toy example, we should be in a better position to understand the

outputs quickly (code available as “simpleRNN.ipynb” in github):

from keras.preprocessing.text import one_hot

from keras.preprocessing.sequence import pad_sequences

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.recurrent import SimpleRNN

from keras.layers.embeddings import Embedding

from keras.layers import LSTM

import numpy as np

Chapter 10 Recurrent Neural Network

228

Initialize the documents and encode the words corresponding to those documents:

define documents

docs = ['very good',

 'very bad']

define class labels

labels = [1,0]

from collections import Counter

counts = Counter()

for i,review in enumerate(docs):

 counts.update(review.split())

words = sorted(counts, key=counts.get, reverse=True)

vocab_size=len(words)

word_to_int = {word: i for i, word in enumerate(words, 1)}

encoded_docs = []

for doc in docs:

 encoded_docs.append([word_to_int[word] for word in doc.split()])

Pad the documents to a maximum length of two words—this is to maintain

consistency so that all the inputs are of the same size:

pad documents to a max length of 2 words

max_length = 2

padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='pre')

print(padded_docs)

�Compiling a Model
The input shape to the SimpleRNN function should be of the form (number of time

steps, number of features per time step). Also, in general RNN uses tanh as the activation

function. The following code specifies the input shape as (2,1) because each input

is based on two time steps and each time step has only one column representing it.

unroll=True indicates that we are considering previous time steps:

define the model

embed_length=1

Chapter 10 Recurrent Neural Network

229

max_length=2

model = Sequential()

model.add(SimpleRNN(1,activation='tanh', return_sequences=False,recurrent_

initializer='Zeros',input_shape=(max_length,embed_length),unroll=True))

model.add(Dense(1, activation='sigmoid'))

compile the model

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])

summarize the model

print(model.summary())

SimpleRNN(1,) indicates that there is a neuron in the hidden layer. return_sequences

is false because we are not returning any sequence of outputs, and it is a single output:

Once the model is compiled, let’s go ahead and fit the model, as follows:

model.fit(padded_docs.reshape(2,2,1),np.array(labels).reshape(max_

length,1),epochs=500)

Chapter 10 Recurrent Neural Network

230

Note that we have reshaped padded_docs. That’s because we need to convert our

training dataset into a format as follows while fitting: {data size, number of time steps,

features per time step}. Also, labels should be in an array format, since the final dense

layer in the compiled model expects an array.

�Verifying the Output of RNN
Now that we have fit our toy model, let’s verify the Excel calculations we created earlier.

Note that we have taken the input to be the raw encodings {1,2,3}—in practice we

would never take the raw encodings as they are, but would one-hot-encode or create

embeddings for the input. We are taking the raw inputs as they are in this section only to

compare the outputs from keras and the hand calculations we are going to do in Excel.

model.layers specifies the layers in the model, and weights gives us an

understanding of the layers associated with the model:

model.weights gives us an indication of the names associated with the weights in

the model:

model.get_weights() gives us the actual values of weights associated with the

model:

Note that the weights are ordered—that is, the first weight value corresponds to

kernel:0. In other words, it is the same as wxh, which is the weight associated with the

inputs.

Chapter 10 Recurrent Neural Network

231

recurrent_kernel:0 is the same as whh, which is the weight associated with the

connection between the previous hidden layer earlier and the current time step’s hidden

layer. bias:0 is the bias associated with the inputs. dense_2/kernel:0 is why—that

is, the weight connecting the hidden layer to the output. dense_2/bias:0 is the bias

associated with connection between the hidden layer and the output.

Let’s verify the prediction for the input [1,3]:

padded_docs[0].reshape(1,2,1)

import numpy as np

model.predict(padded_docs[0].reshape(1,2,1))

Given that the prediction is 0.53199 for the inputs [1,3] (in that order), let’s verify the

same in Excel (available as “simple RNN working verification.xlsx” in github):

The input value at the two time steps are as follows:

Chapter 10 Recurrent Neural Network

232

The matrix multiplication between inputs and weights is calculated as follows:

Now that the matrix multiplication is done, we will go ahead and calculate the

hidden layer value in time step 0:

The hidden layer value in time step 1 is going to be the following:

tanh(Hidden layer value in time step 1 × Weight associated with hidden

layer to hidden layer connection (whh) + Previous hidden layer value)

Chapter 10 Recurrent Neural Network

233

Let’s calculate the inner part of the tanh function first:

Now we’ll calculate the final hidden layer value of time step 1:

Once the final hidden layer value is calculated, it is passed through a sigmoid layer,

so the final output is calculated as follows:

Chapter 10 Recurrent Neural Network

234

The final output that we have from Excel is the same as what we got from keras as

output and thus is a verification of the formulas that we looked at earlier:

�Implementing RNN: Text Generation
Now that we’ve seen how a typical RNN works, let’s look into how to generate text using

APIs provided by keras for RNN (available as “RNN text generation.ipynb” in github).

For this example, we will be working on the alice dataset (www.gutenberg.org/

ebooks/11):

	 1.	 Import the packages:

from keras.models import Sequential

from keras.layers import Dense,Activation

from keras.layers.recurrent import SimpleRNN

import numpy as np

	 2.	 Read the dataset:

fin=open('/home/akishore/alice.txt',encoding='utf-8-sig')

lines=[]

for line in fin:

 line = line.strip().lower()

 line = line.decode("ascii","ignore")

 if(len(line)==0):

 continue

 lines.append(line)

Chapter 10 Recurrent Neural Network

http://www.gutenberg.org/ebooks/11
http://www.gutenberg.org/ebooks/11

235

fin.close()

text = " ".join(lines)

	 3.	 Normalize the file to have only small case and remove

punctuation, if any:

text[:100]

Remove punctuations in dataset

import re

text = text.lower()

text = re.sub('[^0-9a-zA-Z]+',' ',text)

	 4.	 One-hot-encode the words:

from collections import Counter

counts = Counter()

counts.update(text.split())

words = sorted(counts, key=counts.get, reverse=True)

chars = words

total_chars = len(set(chars))

nb_chars = len(text.split())

char2index = {word: i for i, word in enumerate(chars)}

index2char = {i: word for i, word in enumerate(chars)}

	 5.	 Create the input and target datasets:

SEQLEN = 10

STEP = 1

input_chars = []

label_chars = []

text2=text.split()

for i in range(0,nb_chars-SEQLEN,STEP):

 x=text2[i:(i+SEQLEN)]

 y=text2[i+SEQLEN]

 input_chars.append(x)

Chapter 10 Recurrent Neural Network

236

 label_chars.append(y)

print(input_chars[0])

print(label_chars[0])

	 6.	 Encode the input and output datasets:

X = np.zeros((len(input_chars), SEQLEN, total_chars), dtype=np.bool)

y = np.zeros((len(input_chars), total_chars), dtype=np.bool)

Create encoded vectors for the input and output values

for i, input_char in enumerate(input_chars):

 for j, ch in enumerate(input_char):

 X[i, j, char2index[ch]] = 1

 y[i,char2index[label_chars[i]]]=1

print(X.shape)

print(y.shape)

Note that, the shape of X indicates that we have a total 30,407 rows

that have 10 words each, where each of the 10 words is expressed

in a 3,028-dimensional space (since there are a total of 3,028

unique words).

	 7.	 Build the model:

HIDDEN_SIZE = 128

BATCH_SIZE = 128

NUM_ITERATIONS = 100

NUM_EPOCHS_PER_ITERATION = 1

NUM_PREDS_PER_EPOCH = 100

model = Sequential()

model.add(SimpleRNN(HIDDEN_SIZE,return_sequences=False,input_

shape=(SEQLEN,total_chars),unroll=True))

model.add(Dense(nb_chars, activation='sigmoid'))

Chapter 10 Recurrent Neural Network

237

model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

model.summary()

	 8.	 Run the model, where we randomly generate a seed text and try to

predict the next word given the set of seed words:

for iteration in range(150):

 print("=" * 50)

 print("Iteration #: %d" % (iteration))

 # Fitting the values

 �model.fit(X, y, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS_PER_

ITERATION)

 # Time to see how our predictions fare

 # We are creating a test set from a random location in our dataset

 �# �In the code below, we are selecting a random input as our

seed value of words

 test_idx = np.random.randint(len(input_chars))

 test_chars = input_chars[test_idx]

 print("Generating from seed: %s" % (test_chars))

 print(test_chars)

 # From the seed words, we are tasked to predict the next words

 �# �In the code below, we are predicting the next 100 words

(NUM_PREDS_PER_EPOCH) after the seed words

 for i in range(NUM_PREDS_PER_EPOCH):

 �# �Pre processing the input data, just like the way we did

before training the model

 Xtest = np.zeros((1, SEQLEN, total_chars))

Chapter 10 Recurrent Neural Network

238

 for i, ch in enumerate(test_chars):

 Xtest[0, i, char2index[ch]] = 1

 # Predict the next word

 pred = model.predict(Xtest, verbose=0)[0]

 �# �Given that, the predictions are probability values, we take

the argmax to fetch the location of highest probability

 # Extract the word belonging to argmax

 ypred = index2char[np.argmax(pred)]

 print(ypred,end=' ')

 �# �move forward with test_chars + ypred so that we use the

original 9 words + prediction for the next prediction

 test_chars = test_chars[1:] + [ypred]

The output in the initial iterations is just the single word the—always!

The output at the end of 150 iterations is as follows (note that the below is only a

partial output):

The preceding output has very little loss. And if you look at the output carefully after

you execute code, after some iterations it is reproducing the exact text that is present

in the dataset—a potential overfitting issue. Also, notice the shape of our input: ~30K

inputs, where there are 3,028 columns. Given the low ratio of rows to columns, there

is a chance of overfitting. This is likely to work better as the number of input samples

increases a lot more.

The issue of having a high number of columns can be overcome by using

embedding, which is very similar to the way in which we calculated word vectors.

Essentially, embeddings represent a word in a much lower dimensional space.

�Embedding Layer in RNN
To see how embedding works, let’s look at a dataset that tries to predict customer

sentiment of an airline based on customer tweets (code available as “RNNsentiment.

ipynb” in github):

Chapter 10 Recurrent Neural Network

239

	 1.	 As always, import the relevant packages:

 #import relevant packages

from keras.layers import Dense, Activation

from keras.layers.recurrent import SimpleRNN

from keras.models import Sequential

from keras.utils import to_categorical

from keras.layers.embeddings import Embedding

from sklearn.cross_validation import train_test_split

import numpy as np

import nltk

from nltk.corpus import stopwords

import re

import pandas as pd

#Let us go ahead and read the dataset:

t=pd.read_csv('/home/akishore/airline_sentiment.csv')

t.head()

import numpy as np

t['sentiment']=np.where(t['airline_sentiment']=="positive",1,0)

Chapter 10 Recurrent Neural Network

240

	 2.	 Given that the text is noisy, we will pre-process it by removing

punctuation and also converting all words into lowercase:

 def preprocess(text):

 text=text.lower()

 text=re.sub('[^0-9a-zA-Z]+',' ',text)

 words = text.split()

 #words2=[w for w in words if (w not in stop)]

 #words3=[ps.stem(w) for w in words]

 words4=' '.join(words)

 return(words4)

t['text'] = t['text'].apply(preprocess)

	 3.	 Similar to how we developed in the previous section, we convert

each word into an index value as follows:

from collections import Counter

counts = Counter()

for i,review in enumerate(t['text']):

 counts.update(review.split())

words = sorted(counts, key=counts.get, reverse=True)

words[:10]

chars = words

nb_chars = len(words)

word_to_int = {word: i for i, word in enumerate(words, 1)}

int_to_word = {i: word for i, word in enumerate(words, 1)}

word_to_int['the']

#3

int_to_word[3]

#the

Chapter 10 Recurrent Neural Network

241

	 4.	 Map each word in a review to its corresponding index:

 mapped_reviews = []

for review in t['text']:

 mapped_reviews.append([word_to_int[word] for word in review.

split()])

t.loc[0:1]['text']

mapped_reviews[0:2]

Note that, the index of virginamerica is the same in both reviews (104).

Chapter 10 Recurrent Neural Network

242

	 5.	 Initialize a sequence of zeroes of length 200. Note that we have

chosen 200 as the sequence length because no review has more

than 200 words in it. Moreover, the second part of the following

code makes sure that for all reviews that are less than 200 words

in size, all the starting indices are zero padded and only the last

indices are filled with index corresponding to the words present in

the review:

 sequence_length = 200

sequences = np.zeros((len(mapped_reviews), sequence_

length),dtype=int)

for i, row in enumerate(mapped_reviews):

 review_arr = np.array(row)

 sequences[i, -len(row):] = review_arr[-sequence_length:]

	 6.	 We further split the dataset into train and test datasets, as follows:

 y=t['sentiment'].values

X_train, X_test, y_train, y_test = train_test_split(sequences, y,

test_size=0.30,random_state=10)

y_train2 = to_categorical(y_train)

y_test2 = to_categorical(y_test)

	 7.	 Once the datasets are in place, we go ahead and create our model,

as follows. Note that embedding as a function takes in as input the

total number of unique words, the reduced dimension in which

we express a given word, and the number of words in an input:

 top_words=12679

embedding_vecor_length=32

max_review_length=200

model = Sequential()

model.add(Embedding(top_words, embedding_vecor_length,

input_length=max_review_length))

model.add(SimpleRNN(1, return_sequences=False,unroll=True))

model.add(Dense(2, activation='softmax'))

Chapter 10 Recurrent Neural Network

243

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

print(model.summary())

model.fit(X_train, y_train2, validation_data=(X_test, y_test2),

epochs=50, batch_size=1024)

Now let’s look at the summary output of the preceding model. There are a total of 12,679

unique words in the dataset. The embedding layer ensures that we represent each of the

words in a 32-dimensional space, hence the 405,728 parameters in the embedding layer.

Now that we have 32 embedded dimensional inputs, each input is now connected

to one hidden layer unit—thus 32 weights. Along, with the 32 weights, we would have a

bias. The final weight corresponding to this layer would be the weight that connects the

previous hidden to unit value to the current hidden unit. Thus a total of 34 weights.

Note that, given that there is an output coming from the embedding layer, we don’t

need to specify the input shape in the SimpleRNN layer. Once the model has run, the

output classification accuracy turns out to be close to 87%.

�Issues with Traditional RNN
A traditional RNN that takes multiple time steps into account for giving a prediction is

shown in Figure 10-5.

Chapter 10 Recurrent Neural Network

244

Note that as time step increases, the impact of input from a much earlier layer on

output of later layers is much less. That can be seen in the following (for now, we’ll

ignore the bias terms):

h1 = Wx1

h2 = Wx2 + Uh1 = Wx2 + UWx1

h3 = Wx3 + Uh2 = Wx3 + UWx2 + U2Wx1

h4 = Wx4 + Uh3 = Wx4 + UWX3 + U2WX2 + U3WX1

h5 = Wx5 + Uh4 = Wx5 + UWX4 + U2WX3 + U3WX2 + U4WX1

Note that as the time stamp increases, the value of the hidden layer is highly

dependent on X1 if U > 1, and a little dependent on X1 if U < 1.

�The Problem of Vanishing Gradient
The gradient of U4 with respect to U is 4 × U3. In such a case, note that if U < 1, the

gradient is very small, so arriving at the ideal weights takes a very long time if the output

at a much a later time step depends on the input at a given time step. This results in an

issue when there is a dependency on a word that occurred much earlier in the time steps

in some sentences. For example, “I am from India. I speak fluent ____.” In this case, if we

did not take the first sentence into account, the output of the second sentence, “I speak

fluent ____” could be the name of any language. Because we mentioned the country

in the first sentence, we should be able to narrow things down to languages specific to

India.

1 2 3 4 5 6 7

Outputs

Hidden
Layer

Inputs

Time

Figure 10-5.  An RNN with multiple time steps

Chapter 10 Recurrent Neural Network

245

�The Problem of Exploding Gradients
In the preceding scenario, if U > 1, then gradients increase by a much larger amount.

This would result in having a very high weightage for inputs that occurred much earlier

in the time steps and low weightage for inputs that occurred near the word that we are

trying to predict.

Hence, depending on the value of U (weights of the hidden layer), the weights either

get updated very quickly or take a very long time.

Given that vanishing/exploding gradient is an issue, we should deal with RNNs in a

slightly different way.

�LSTM
Long short-term memory (LSTM) is an architecture that helps overcome the vanishing

or exploding gradient problem we saw earlier. In this section, we will look at the

architecture of LSTM and see how it helps in overcoming the issue with traditional RNN.

LSTM is shown in Figure 10-6.

Note that although the input X and the output of the hidden layer (h) remain the

same, the activations that happen within the hidden layer are different. Unlike the

traditional RNN, which has tanh activation, there are different activations that happen

within LSTM. We’ll go through each of them.

x

x x

+
tanh

tanh

x

x

+
tanh

x

x

+
tanh

x

x

+
tanh

x

x

+
tanh

ht-1 ht ht+1

Xt-1 Xt+1Xt

Figure 10-6.  LSTM

Chapter 10 Recurrent Neural Network

246

In Figure 10-7, X and h represent the input and hidden layer, as we saw earlier.

C represents the cell state. You can think of cell state as a way in which long-term

dependencies are captured.

f represents the forget gate:

f W x W h bt xf
t

hf
t

f= + +()() -()s 1

Note that the sigmoid gives us a mechanism to specify what needs to be forgotten.

This way, some historical words that are captured in h(t–1) are selectively forgotten.

Once we figure what needs to be forgotten, the cell state gets updated as follows:

c c ft t= Ä()-1

Note that Ä represents element-to-element multiplication.

Consider that once we fill in the blank in “I live in India. I speak ____” with the name

of an Indian language, we don’t need the context of “I live in India” anymore. This is

where the forget gate helps in selectively forgetting the information that is not needed

anymore.

Once we figure out what needs to be forgotten in the cell state, we can go ahead and

update the cell state based on the current input.

In the next step, the input that needs to update the cell state is achieved through the

sigmoid application on top of input, and the magnitude of update (either positive or

negative) is obtained through the tanh activation.

x

x x

+
tanh

tanh

ht

Xt

ht-1

Ct-1

ht

Ct

ft
it

ct
ot

Figure 10-7.  Various components of LSTM

Chapter 10 Recurrent Neural Network

247

The input can be specified as follows:

i W x W h bt xi
t

hi
t

i= + +()() -()s 1

The modulation can be specified like this:

g W x W h bt xg
t

hg
t

g= + +()() -()tanh 1

The cell state thus finally gets updated as the following:

C C f i gt t
t t t

() -()= ()Å()1 � �

In the final gate, we need to specify what part of the combination of input and cell

state needs to be outputted to the next hidden layer:

o W x W h bt xo
t

ho
t

o= + +()() -()s 1

The final hidden layer is represented like this:

h o Ct
t

t() ()= ()� tanh

Given that the cell state can memorize the values that are needed at a later point in

time, LSTM provides better results than traditional RNN in predicting the next word,

typically in sentiment classification. This is especially useful in a scenario where there is

a long-term dependency that needs to be taken care of.

�Implementing Basic LSTM in keras
To see how the theory presented so far translates into action, let’s relook at the toy

example we saw earlier (code available as “LSTM toy example.ipynb” in github):

	 1.	 Import the relevant packages:

from keras.preprocessing.text import one_hot

from keras.preprocessing.sequence import pad_sequences

from keras.models import Sequential

from keras.layers import Dense

Chapter 10 Recurrent Neural Network

248

from keras.layers import Flatten

from keras.layers.recurrent import SimpleRNN

from keras.layers.embeddings import Embedding

from keras.layers import LSTM

import numpy as np

	 2.	 Define documents and labels:

define documents

docs = ['very good',

 'very bad']

define class labels

labels = [1,0]

	 3.	 One-hot-encode the documents:

from collections import Counter

counts = Counter()

for i,review in enumerate(docs):

 counts.update(review.split())

words = sorted(counts, key=counts.get, reverse=True)

vocab_size=len(words)

word_to_int = {word: i for i, word in enumerate(words, 1)}

encoded_docs = []

for doc in docs:

 encoded_docs.append([word_to_int[word] for word in doc.split()])

encoded_docs

	 4.	 Pad documents to a maximum length of two words:

max_length = 2

padded_docs = pad_sequences(encoded_docs, maxlen=max_length,

padding='pre')

print(padded_docs)

Chapter 10 Recurrent Neural Network

249

	 5.	 Build the model:

model = Sequential()

model.add(LSTM(1,activation='tanh', return_

sequences=False,recurrent_initializer='Zeros',

recurrent_activation='sigmoid',

 input_shape=(2,1),unroll=True))

model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['acc'])

print(model.summary())

Note that in the preceding code, we have initialized the recurrent initializer and

recurrent activation to certain values only to make this toy example easier to understand

when implemented in Excel. The purpose is to help you understand what is happening

in the back end only.

Once the model is initialized as discussed, let’s go ahead and fit the model:

model.fit(padded_docs.reshape(2,2,1),np.array(labels).reshape(max_

length,1),epochs=500)

Chapter 10 Recurrent Neural Network

250

The layers of this model are as follows. Here is model.layers:

The weights and the order of weights can be obtained as follows:

model.layers[0].get_weights()

model.layers[0].trainable_weights

model.layers[1].get_weights()

model.layers[1].trainable_weights

From the preceding code, we can see that weights of input (kernel) are obtained

first, followed by weights corresponding to the hidden layer (recurrent_kernel) and

finally the bias in the LSTM layer.

Similarly, in the dense layer (the layer connecting the hidden layer to output), the

weight to be multiplied with the hidden layer comes first, followed by the bias.

Chapter 10 Recurrent Neural Network

251

Also note that the order in which weights and bias appear in the LSTM layer is as

follows:

	 1.	 Input gate

	 2.	 Forget gate

	 3.	 Modulation gate (cell gate)

	 4.	 Output gate

Now that we have our outputs, let’s go ahead and calculate the predictions for input.

Note that just like in the previous section, we are using raw encoded inputs (1,2,3)

without further processing them—only to see how the calculation works.

In practice, we would be further processing the inputs, potentially encoding them

into vectors to obtain the predictions, but in this example we are interested in solidifying

our knowledge of how LSTM works by replicating the predictions from LSTM in Excel:

padded_docs[1].reshape(1,2,1)

model.predict(padded_docs[1].reshape(1,2,1))

Now that we have a predicted probability of 0.4485 from the model, let’s hand-

calculate the values in Excel (available in github as “LSTM working details.xlsx”):

Note that the values here are taken from keras’s model.layers[0].get_weights()

output.

Chapter 10 Recurrent Neural Network

252

Before proceeding with the calculation of the values at various gates, note that we

have initialized the value of recurrent layer (ht-1) to 0. In the first time step, the input is a

value of 1. Let’s calculate the value at various gates:

The calculations to obtain the preceding output are as follows:

Chapter 10 Recurrent Neural Network

253

Now that all the values at various gates are calculated, we’ll calculate the output

(the hidden layer):

The hidden layer value just shown is the hidden layer output at the time step where

the input is 1.

Now, we’ll go ahead and calculate the hidden layer value when the input is 2 (which

is the input at the second time step of our data point that we were predicting in the code

earlier):

Chapter 10 Recurrent Neural Network

254

Let’s see how the values are obtained for the various gates and the hidden layer

for the second input. The key to note here is that the hidden layer of the first time step

output is an input to the calculation of all gates in the second input:

Finally, given that we have calculated the hidden layer output of the second time

step, we calculate the output, as follows:

Chapter 10 Recurrent Neural Network

255

The final output of the preceding calculations is shown here:

Note that the output that we’ve derived is the same as what we see in the keras output.

�Implementing LSTM for Sentiment Classification
In the last section, we implemented sentiment classification using RNN in keras. In this

section, we will look at implementing the same using LSTM. The only change in the code

we saw above will be the model compiling part, where we will be using LSTM in place of

SimpleRNN—everything else will remain the same (code is available in “RNN sentiment.

ipynb” file in github):

top_words=nb_chars

embedding_vecor_length=32

max_review_length=200

model = Sequential()

model.add(Embedding(top_words, embedding_vecor_length, input_length=max_

review_length))

model.add(LSTM(10))

model.add(Dense(2, activation='softmax'))

Chapter 10 Recurrent Neural Network

256

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

print(model.summary())

model.fit(X_train, y_train2, validation_data=(X_test, y_test2), epochs=50,

batch_size=1024)

Once you implement the model, you should see that the prediction accuracy of LSTM

is slightly better than that of RNN. In practice, for the dataset we looked earlier, LSTM

gives an accuracy of 91%, whereas RNN gave an accuracy of 87%. This can be further fine-

tuned by adjusting various hyper-parameters that are provided by the functions.

�Implementing RNN in R
To look at how to implement RNN/LSTM in R, we will use the IMDB sentiment

classification dataset that comes pre-built along with the kerasR package (code available

as “kerasR_code_RNN.r” in github):

Load the dataset

library(kerasR)

imdb <- load_imdb(num_words = 500, maxlen = 100)

Note that we are fetching only the top 500 words by specifying num_words as a

parameter. We are also fetching only those IMDB reviews that have a length of at most

100 words.

Let’s explore the structure of the dataset:

str(imdb)

We should notice that in the pre-built IMDB dataset that came along with the kerasR

package, each word is replaced by the index it represents by default. So we do not have to

perform the step of word-to-index mapping:

Build the model with an LSTM

model <- Sequential()

model$add(Embedding(500, 32, input_length = 100, input_shape = c(100)))

model$add(LSTM(32)) # Use SimpleRNN, if we were to perform a RNN function

model$add(Dense(256))

Chapter 10 Recurrent Neural Network

257

model$add(Activation('relu'))

model$add(Dense(1))

model$add(Activation('sigmoid'))

Compile and fit the model

keras_compile(model, loss = 'binary_crossentropy', optimizer =

Adam(),metrics='binary_accuracy')

keras_fit(model, X_train, Y_train, batch_size = 1024, epochs = 50,

verbose = 1,validation_data = list(X_test,Y_test))

The preceding results in close to 79% accuracy on the test dataset prediction.

�Summary
In this chapter, you learned the following:

•	 RNNs are extremely helpful in dealing with data that has time

dependency.

•	 RNNs face issues with vanishing or exploding gradient when dealing

with long-term dependency in data.

•	 LSTM and other recent architectures come in handy in such a

scenario.

•	 LSTM works by storing the information in cell state, forgetting the

information that does not help anymore, selecting the information as

well as the amount of information that need to be added to cell state

based on current input, and finally, the information that needs to be

outputted to the next state.

Chapter 10 Recurrent Neural Network

259
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_11

CHAPTER 11

Clustering
The dictionary meaning of clustering is grouping. In data science, too, clustering is an

unsupervised learning technique that helps in grouping our data points.

The benefits of grouping data points (rows) include the following:

•	 For a business user to understand the various types of users among

customers

•	 To make business decisions at a cluster (group) level rather than at an

overall level

•	 To help improve the accuracy of predictions, since different groups

exhibit different behavior, and hence a separate model can be made

for each group

In this chapter, you will learn the following:

•	 Different types of clustering

•	 How different types of clustering work

•	 Use cases of clustering

�Intuition of clustering
Let’s consider an example of a retail store with 4,000 outlets. The central planning team

has to perform year-end evaluations of the store managers of all the outlets. The major

metric on which a store manager is evaluated is the total sales made by the store over

the year.

•	 Scenario 1: A store manager is evaluated solely on the sales made.

We’ll rank order all the store managers by the sales their stores have

made, and the top-selling store managers receive the highest reward.

260

Drawback: The major drawback of this approach is that we are not

taking into account that some stores are in cities, which typically

have very high sales when compared to rural stores. The biggest

reason for high sales in city stores could be that the population is

high and/or the spending power of city-based customers is higher.

•	 Scenario 2: If we could divide the stores into city and rural, or stores

that are frequented by customers with high purchasing power, or

stores that are frequented by populations of a certain demographic

(say, young families) and call each of them a cluster, then only those

store managers who belong to the same cluster can be compared.

For example, if we divide all the stores into city stores and rural

stores, then all the store managers of city stores can be compared

with each other, and the same would be the case with rural store

managers.

Drawback: Although we are in a better place to compare the

performance of different store managers, the store managers can

still be compared unfairly. For example, two city stores could be

different—one store is in the central business district frequented

by office workers, and another is in a residential area of a city. It

is quite likely that central business district stores inherently have

higher sales among the city stores.

Although scenario 2 still has a drawback, it is not as bad a problem as in

scenario 1. Thus clustering into two kinds of stores helps a little as a more accurate way

of measuring store manager performance.

�Building Store Clusters for Performance Comparison
In scenario 2, we saw that the store managers can still question the process of

comparison as unfair—because stores can still differ in one or more parameters.

The store managers might cite multiple reasons why theirs differs from other stores:

•	 Differences in products that are sold in different stores

Chapter 11 Clustering

261

•	 Differences in the age group of customers who visit the store

•	 Differences in lifestyles of the customers who visit the store

For now, for the sake of simplicity, let’s define all our groups:

•	 City store versus rural store

•	 High-products store versus low-products store

•	 High-age-group-customers store versus low-age-group-customers

store

•	 Premium-shoppers store versus budget-shoppers store

We can create a total of 16 different clusters (groups) based on just the factors listed

(the exhaustive list of all combinations results in 16 groups).

We talked about the four important factors that differentiate the stores, but there

could still be many other factors that differentiate among stores. For example, a store

that is located in a rainier part of the state versus a store that is located in a sunnier part.

In essence, stores differ from each other in multiple dimensions/factors. But results

of store managers might differ significantly because of certain factors, while the impact

of other factors could be minimal.

�Ideal Clustering
So far, we see that each store is unique, and there could be a scenario where a store

manager can always cite one reason or another why they cannot be compared with

other stores that fall into the same cluster. For example, a store manager can say that

although all the stores that belong to this group are city stores with majority of premium

customers in the middle-aged category, their store did not perform as well as other

stores because it is located close to a competitor store that has been promoting heavily—

hence, the store sales were not that high when compared to other stores in the same

group.

Thus, if we take all the reasons into consideration, we might end up with a granular

segmentation to the extent that there is only store in each cluster. That would result in a

great clustering output, where each store is different, but the outcome would be useless

because now we cannot compare across stores.

Chapter 11 Clustering

262

�Striking a Balance Between No Clustering and Too Much
Clustering: K-means Clustering
We’ve seen that having as many clusters as there are stores is a great cluster that

differentiates among each store, but it’s a useless cluster since we cannot draw any

meaningful results from it. At the same time, having no cluster is also bad because store

managers might be compared inaccurately with store mangers of completely different

stores.

Thus, using the clustering process, we strive towards striking a balance. We want to

identify the few factors that differentiate the stores as much as possible and consider

only those for evaluation while leaving out the rest. The means of identifying the few

factors that differentiate among the stores as much as possible is achieved using k-means

clustering.

To see how k-means clustering works, let’s consider a scenario: you are the owner of

a pizza chain. You have a budget to open three new outlets in a neighborhood. How do

you come up with the optimal places to open the three outlets?

For now, we’ll assume that the traffic in the neighborhood is uniform across all the

roads. Let’s say our neighborhood looks like Figure 11-1.

Figure 11-1.  Each marker represents a household

Chapter 11 Clustering

263

Ideally, we would have come up with three outlets that are far away from each other

but that collectively are nearest to most of the neighborhood. For example, something

like Figure 11-2.

That seems okay, but can we come up with more optimal outlet locations? Let’s try

an exercise. We will attempt to do the following:

	 1.	 Minimize the distance of each household to the nearest pizza

outlet

	 2.	 Maximize the distance between each pizza outlet

Figure 11-2.  The circles represent potential outlet locations

Chapter 11 Clustering

264

Assume for a second that a pizza outlet can deliver to two houses only. If the demand

from both houses is uniform, would it be better to locate the pizza outlet exactly between

the houses or closer to one or the other house? If it takes 15 minutes to deliver to house A

and 45 minutes to deliver to house B, intuitively we would seem to be better off locating

the outlet where the time to deliver to either house is 30 minutes—that is, at a point

exactly between the two houses. If that were not the case, the outlet might often fail on its

promise to deliver within 45 minutes for house B, while never failing to keep its promises

to household A.

�The Process of Clustering
In the scenario underway, how do we come up with a more scientific way of identifying

the right pizza delivery outlets? The process, or algorithm, is as follows:

	 1.	 Randomly come up with three places where we can start outlets,

as shown in Figure 11-3.

Figure 11-3.  Random locations

Chapter 11 Clustering

265

	 2.	 Measure the distance of each house to the three outlet locations.

The outlet that is closest to the household delivers to the

household. The scenario would look like Figure 11-4.

Figure 11-4.  Better informed locations

Chapter 11 Clustering

266

	 3.	 As we saw earlier, we are better off if the delivery outlet is in the

middle of households than far away from the majority of the

households. Thus, let’s change our earlier planned outlet location

to be in the middle of the households (Figure 11-5).

Figure 11-5.  Locations in the middle

Chapter 11 Clustering

267

	 4.	 We see that the delivery outlet locations have changed to be

more in the middle of each group. But because of the change

in location, there might be some households that are now closer

to a different outlet. Let’s reassign households to stores based on

their distance to different stores (Figure 11-6).

Figure 11-6.  Reassigning households

	 5.	 Now that some households (comparing Figures 11-5

and 11-6) have a different outlet that serves them, let’s recompute

the middle point of that group of households (Figure 11-7).

Chapter 11 Clustering

268

Figure 11-7.  Recomputing the middles

	 6.	 Now that the cluster centers have changed, there is now another

a chance that the households need to be reassigned to a different

outlet than the current one.

The steps continue until there is no further reassignment of households to different

clusters, or a maximum of a certain number of iterations is reached.

As you can see, we can in fact come up a more scientific/analytical way of finding

optimal locations where the outlets can be opened.

�Working Details of K-means Clustering Algorithm
We will be opening three outlets, so we came up with three groups of households, where

each group is served by a different outlet.

The k in k-means clustering stands for the number of groups we will be creating in the

dataset we have. In some of the steps in the algorithm we went through in the preceding

section, we kept updating the centers once some households changed their group from

one to another. The way we were updating centers is by taking the mean of all the data

points, hence k-means.

Chapter 11 Clustering

269

Finally, after going through the steps as described, we ended up with three groups of

three datapoints or three clusters from the original dataset.

�Applying the K-means Algorithm on a Dataset
Let’s look at how k-means clustering can be implemented on a dataset (available as

“clustering process.xlsx” in github), as follows:

X Y Cluster

5 0 1

5 2 2

3 1 1

0 4 2

2 1 1

4 2 2

2 2 1

2 3 2

1 3 1

5 4 2

Let X and Y be the independent variables that we want our clusters to be based on.

Let’s say we want to divide this dataset into two clusters.

In the first step, we initialize the clusters randomly. So, the cluster column in the

preceding table is randomly initialized.

Let’s calculate the centroid of each of the clusters:

Centroid 1 2

X 2.6 3.2

Y 1.4 3

Note that the value 2.6 is the average of all the values of X that belong to cluster 1.

Similarly, the other centers are calculated.

Now let’s calculate the distance of each point to the two cluster centers. The cluster

center that is closest to the data point is the cluster the data point should belong to:

Chapter 11 Clustering

270

In columns L & M we have calculated the distance of each point to the two cluster

centers. The cluster center in column O is updated by looking at the cluster that has

minimum distance with the data point.

Noting that there is a change in the cluster for a data point, we proceed with the

preceding step again, but now with the updated centers. The overall calculation now

looks like the following for the two iterations we did:

Chapter 11 Clustering

271

We keep on iterating the process until there is no further change in the clusters that

data points belong to. If a data point cluster keeps on changing, we would potentially

stop after a few iterations.

�Properties of the K-means Clustering Algorithm
As noted earlier, the objective of a clustering exercise is to create distinct groups in such

a way that the following are true:

	 1.	 All points belonging to the same group are as close to each other

as possible

	 2.	 Each group’s center is as far away from other group’s center as

possible

There are measures that help in assessing the quality of a clustering output based on

these objectives.

Let’s cement our understanding of the properties through a sample dataset (available in

github as “clustering output interpretation.xlsx”). Let’s say we have a dataset as follows: two

independent variables (x and y) and the corresponding cluster they belong to (a total of four

clusters, just for this example):

Chapter 11 Clustering

272

The four cluster centers are as follows:

We calculate the distance of every point with respect to its corresponding cluster

center as follows:

Note that the column withinss is calculating the distance of each point to its

corresponding cluster center. Let’s look at the formulas used to arrive at the preceding results:

Chapter 11 Clustering

273

�Totss (Total Sum of Squares)

In a scenario where the original dataset itself is considered as a cluster, the midpoint of

the original dataset is considered as the center. Totss is the sum of the squared distance

of all points to the dataset center.

Let’s look at the formulas:

Total sum of squares would be the sum of all the values from cell B15 to cell C24.

Chapter 11 Clustering

274

�Cluster Centers

The cluster center of each cluster will be the midpoint (mean) of all the points that fall

in the same cluster. For example, in the Excel sheet cluster centers are calculated in

columns I and J. Note that this is just the average of all points that fall in the same cluster.

�Tot.withinss

Tot.withinss is the sum of the squared distance of all points to their corresponding

cluster center .

�Betweenss

Betweenss is the difference between totss and tot.withinss.

�Implementing K-means Clustering in R
K-means clustering in R is implemented by using the kmeans function, as follows

(available as “clustering_code.R” in github):

Lets generate dataset randomly

x=runif(1000)

y=runif(1000)

data=cbind(x,y)

One would have to specify the dataset along with the number of clusters

in input

km=kmeans(data,2)

Chapter 11 Clustering

275

The output of km is the major metrics discussed earlier:

�Implementing K-means Clustering in Python
K-means clustering in Python is implemented by functions available in the scikit-

learn library as follows (available as “clustering.ipynb” in github):

import packages and dataset

import pandas as pd

import numpy as np

data2=pd.read_csv('D:/data.csv')

fit k-means with 2 clusters

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=2)

kmeans.fit(data2)

In that code snippet, we are extracting two clusters from the original dataset named

data2. The resulting labels for each data point of which cluster they belong to can be

extracted by specifying kmeans.labels_.

Chapter 11 Clustering

276

�Significance of the Major Metrics
As discussed earlier, the objective of the exercise of clustering is to get all the data points

that are very close to each other into one group and have groups that are as far away from

each other as possible.

Here’s another way to say that:

	 1.	 Minimize intracluster distance

	 2.	 Maximize intercluster distance

Let’s look at how the metrics discussed earlier help in achieving the objective. When

there is no clustering (that is, all the dataset is considered as one cluster), the overall

distance of each point to the cluster center (where there is one cluster) is totss. The

moment we introduce clustering in the dataset, the sum of distance of each point within

a cluster to the corresponding cluster centre is tot.withinss. Note that as the number of

clusters increases, tot.withinss keeps on decreasing.

Consider a scenario where the number of clusters is equal to the number of data

points. Tot.withinss is equal to 0 in that scenario, because the distance of each point to

the cluster center (which is the point itself) is 0.

Thus, tot.withinss is a measure of intracluster distance. The lower the ratio of tot.

withinss / totss, the higher quality is the clustering process.

However, we also need to note that the scenario where tot.withinss = 0 is the scenario

where the clustering becomes useless, because each point is a cluster in itself.

In the next section, we’ll make use of the metric tot.withinss / totss in a slightly

different way.

�Identifying the Optimal K
One major question we have not answered yet is how to obtain the optimal k value? In

other words, what is the optimal number of clusters within a dataset?

Chapter 11 Clustering

277

To answer this question, we’ll use the metric we used in the last section: the ratio of

tot.withinss / totss. To see how the metric varies as we vary the number of clusters (k),

see the following code:

We are creating a dataset data with 10,000 randomly initialized x and y values.

Now we’ll explore the value of the metric as we vary the k value. The plot looks like

Figure 11-8.

Figure 11-8.  Variation in tot.withinss/totss over different values of k

Chapter 11 Clustering

278

Note that as the value of k is increased from k = 1 to k = 2, there is a steep decrease in

the metric, and similarly, the metric decreased when k is reduced from 2 to 4.

However, as k is further reduced, the value of the metric does not decrease by a lot.

So, it is prudent to keep the value of k close to 7 because maximum decrease is obtained

up to that point, and any further decrease in the metric (tot.withinss / totss) does not

correlate well with an increase in k.

Given that the curve looks like an elbow, it sometimes called the elbow curve.

�Top-Down Vs. Bottom-Up Clustering
So far, in the process of k-means clustering, we don’t know the optimal number of

clusters, so we keep trying various scenarios with multiple values of k. This is one of

the relatively small problems with the bottom-up approach, where we start with an

assumption that there is no cluster and slowly keep building multiple clusters, one at a

time, till we find the optimal k based on the elbow curve.

Top-down clustering takes an alternative look at the same process. It assumes that

each point is a cluster in itself and tries to combine points based on their distance from

other points.

�Hierarchical Clustering
Hierarchical clustering is a classic form of top-down clustering. In this process, the

distance of each point to the rest of points is calculated. Once the distance is calculated,

the points that are closest to the point in consideration are combined to form a cluster.

This process is repeated across all points, and thus a final cluster is obtained.

The hierarchical part comes from the fact that we start with one point, combine it

with another point, and then combine this combination of points with a third point, and

keep on repeating this process.

Let’s have a look at coming up with hierarchical clustering through an example. Say

we have six different data points - A,B,C,D,E,F. The eucledian distance of the different

data points with respect to other points is shown in Figure 11-9.

Chapter 11 Clustering

279

We see that the minimum distance is between D and F. Thus, we combine D and F.

The resulting matrix now looks like Figure 11-10.

How do we fill in the missing values in Figure 11-10? See the following equation:

	
d d dD F A DA FA, min , min . , . .()® = () = () =3 61 3 20 3 20 	

Note that, based on the preceding calculation, we replace the missing value in

the distance between {D,F} and A with minimum of the distances between DA and

FA. Similarly, we would impute with other missing values. We keep proceeding like that

until we are left with Figure 11-11.

Figure 11-9.  Distance of data points

Dist A B C D,F E
A 0 0.71 5.66 ? 4.24
B 0.71 0 4.95 ? 3.54
C 5.66 4.95 0 ? 1.41
D,F ? ? ? 0 ?
E 4.24 3.54 1.41 ? 0

Figure 11-10.  The resulting matrix

Dist
(A,B)

(A,B)

((D,F),E),C

((D,F),E),C

0 2.5
2.5 0

Figure 11-11.  The final matrix

Chapter 11 Clustering

280

The resulting cluster can now be represented as Figure 11-12.

�Major Drawback of Hierarchical Clustering
One of the major drawbacks of hierarchical clustering is the large number of calculations

one needs to perform.

If there are 100 points in a dataset, say, then the first step is identifying the point that

is closest to point 1 and so on for 99 computations. And for the second step, we need to

compare the second point’s distance with the rest of the 98 points. This makes for a total

of 99 × 100 / 2, or n × (n – 1) / 2 calculations when there are n data points, only to identify

the combination of data points that have the least distance between them among all the

combination of data points.

The overall computation becomes extremely complex as the number of data points

increase from 100 to 1,000,000. Hence, hierarchical clustering is suited only for small

datasets.

�Industry Use-Case of K-means Clustering
We’ve calculated the optimal value of k using the elbow curve of the tot.withinss / totss

metric. Let’s use a similar calculation for a typical application in building a model.

Figure 11-12.  Representing the cluster

Chapter 11 Clustering

281

Let’s say we are fitting a model to predict whether a transaction is fraudulent or not

using logistic regression. Given that we would be working on all the data points together,

this translates into a clustering exercise where k = 1 on the overall dataset. And let’s say

it has an accuracy of 90%. Now let’s fit the same logistic regression using k = 2, where we

have a different model for each cluster. We’ll measure the accuracy of using two models

on the test dataset.

We keep repeating the exercise by increasing the value of k—that is, by increasing

the number of clusters. Optimal k is where we have k different models, one each for each

cluster and also the ones that achieve the highest accuracy on top of the test dataset.

Similarly, we would use clustering to understand the various segments that are present

in the dataset.

�Summary
In this chapter, you learned the following:

•	 K-means clustering helps in grouping data points that are more

similar to each other and in forming groups in such a way that the

groups are more dissimilar to each other.

•	 Clustering can form a crucial input in segmentation, operations

research, and mathematical modeling.

•	 Hierarchical clustering takes the opposite approach of k-means

clustering in forming the cluster.

•	 Hierarchical clustering is more computationally intensive to generate

when the number of data points is large.

Chapter 11 Clustering

283
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_12

CHAPTER 12

Principal Component
Analysis
Regression typically works best when the ratio of number of data points to number of

variables is high. However, in some scenarios, such as clinical trials, the number of data

points is limited (given the difficulty in collecting samples from many individuals), and

the amount of information collected is high (think of how much information labs give us

based on small samples of collected blood).

In these cases, where the ratio of data points to variables is low, one faces difficulty in

using the traditional techniques for the following reasons:

•	 There is a high chance that a majority of the variables are correlated

to each other.

•	 The time taken to run a regression could be very extensive because

the number of weights that need to be predicted is large.

Techniques like principal component analysis (PCA) come to the rescue in such cases.

PCA is an unsupervised learning technique that helps in grouping multiple variables into

fewer variables without losing much information from the original set of variables.

In this chapter, we will look at how PCA works and get to know the benefits of

performing PCA. We will also implement it in Python and R.

Intuition of PCA
PCA is a way to reconstruct the original dataset by using fewer features or variables than

the original one had. To see how that might work, consider the following example:

284

Dep Var Var 1 Var 2

0 1 10

0 2 20

0 3 30

0 4 40

0 5 50

1 6 60

1 7 70

1 8 80

1 9 90

1 10 100

We’ll assume both Var 1 and Var 2 are the independent variables used to predict the

dependent variable (Dep Var). We can see that Var 2 is highly correlated to Var 1, where

Var 2 = (10) × Var 1.

A plot of their relation can be seen in Figure 12-1.

Figure 12-1.  Plotting the relation

Chapter 12 Principal Component Analysis

285

In the figure, we can clearly see that there is a strong relation between the variables.

This means the number of independent variables can be reduced.

The equation can be expressed like this:

Var2 = 10 × Var1

In other words, instead of using two different independent variables, we could have

just used one variable Var1 and it would have worked out in solving the problem.

Moreover, if we are in a position to view the two variables through a slightly different

angle (or, we rotate the dataset), like the one indicated by the arrow in Figure 12-2, we

see a lot of variation in horizontal direction and very little in vertical direction.

Figure 12-2.  Viewpoint/angle from which data points should be looked at

Let’s complicate our dataset by a bit. Consider a case where the relation between v1

and v2 is like that shown in Figure 12-3.

Chapter 12 Principal Component Analysis

286

Again, the two variables are highly correlated with each other, though not as

perfectly correlated as the previous case.

In such scenario, the first principle component is the line/variable that explains the

maximum variance in the dataset and is a linear combination of multiple independent

variables. Similarly, the second principal component is the line that is completely

uncorrelated (has a correlation of close to 0) to the first principal component and that

explains the rest of variance in dataset, while also being a linear combination of multiple

independent variables.

Typically the second principal component is a line that is perpendicular to the first

principal component (because the next highest variation happens in a direction that is

perpendicular to the principal component line).

In general, the nth principal component of a dataset is perpendicular to the (n – 1)th

principal component of the same dataset.

�Working Details of PCA
In order to understand how PCA works, let’s look at another example (available as

“PCA_2vars.xlsx” in github), where x1 and x2 are two independent variables that are

highly correlated with each other:

Figure 12-3.  Plotting two variables

Chapter 12 Principal Component Analysis

287

Given that a principal component is a linear combination of variables, we’ll express

it as follows:

PC1 = w1 × x1 + w2 × x2

Similarly, the second principal component is perpendicular to the original line, as

follows:

PC2 = –w2 × x1 + w1 × x2

The weights w1 and w2 are randomly initialized and should be iterated further to

obtain the optimal ones.

Let’s revisit the objective and constraints that we have, while solving for w1 and w2:

•	 Objective: Maximize PC1 variance.

•	 Constraint: Overall variance in principal components should be equal to

the overall variance in original dataset (as the data points did not change,

but only the angle from which we view the data points changed).

Let’s initialize the principal components in the dataset we created earlier:

Chapter 12 Principal Component Analysis

288

The formulas for PC1 and PC2 can be visualized as follows:

Now that we have initialized the principal component variables, we’ll bring in the

objective and constraints:

Note that PC variance = PC1 variance + PC2 variance.

Original variance = x1 variance + x2 variance

We calculate the difference between original and PC variance since our constraint

is to maintain the same variance as original dataset in the principal component

transformed dataset. Here are their formulas:

Chapter 12 Principal Component Analysis

289

Once the dataset is initialized, we will proceed with identifying the optimal values of

w1 and w2 that satisfy our objective and constraint.

Let us look at how do we achieve that through Excel’s Solver add-in:

Chapter 12 Principal Component Analysis

290

Note that the objective and criterion that we specified earlier are met:

•	 PC1 variance is maximized.

•	 There is hardly any difference between the original dataset variance

and the principal component dataset variance. (We have allowed for

a small difference of less than 0.01 only so that Excel is able to solve it

because there may be some rounding-off errors.)

Note that PC1 and PC2 are now highly uncorrelated with each other, and PC1

explains the highest variance across all variables. Moreover, x2 has a higher weightage in

determining PC1 than x1 (as is evident from the derived weight values).

In practice, once a principal component is arrived at, it is centered around the

corresponding mean value—that is, each value within the principal component column

would be subtracted by the average of the original principal component column:

Chapter 12 Principal Component Analysis

291

The formulas used to derive the preceding dataset are shown here:

�Scaling Data in PCA
One of the major pre-processing steps in PCA is to scale the variables. Consider the

following scenario: we are performing PCA on two variables. One variable has a range of

values from 0–100, and another variable has a range of values from 0–1.

Given that, using PCA, we are trying to capture as much variation in the dataset as

possible, the first principal component will give a very high weightage to the variable

that has maximum variance (in our case, Var1) when compared to the variable with low

variance.

Hence, when we work out w1 and w2 for the principal component, we will end up

with a w1 that is close to 0 and a w2 that is close to 1 (where w2 is the weight in PC1

corresponding to the higher ranged variable). To avoid this, it is advisable to scale

each variable so that both of them have similar range, due to which variance can be

comparable.

�Extending PCA to Multiple Variables
So far, we have seen building a PCA where there are two independent variables. In

this section, we will consider how to hand-build a PCA where there are more than two

independent variables.

Chapter 12 Principal Component Analysis

292

Consider the following dataset (available as “PCA_3vars.xlsx” in github):

Unlike a two-variable PCA, in a more than 2-dimensional PCA, we’ll initialize the

weights in a slightly different way. The weights are initialized randomly—but in matrix

form, as follows:

From this matrix, we can consider PC1 = 0.49 × x1 + 0.89 × x2 + 0.92 × x3. PC2 and

PC3 would be worked out similarly. If there were four independent variables, we would

have had a 4 × 4-weight matrix.

Let’s look at the objective and constraints we might have:

•	 Objective: Maximize PC1 variance.

•	 Constraints: Overall PC variance should be equal to overall original

dataset variance. PC1 variance should be greater than PC2 variance,

PC1 variance should be greater than PC3 variance, and PC2 variance

should be greater than PC3 variance.

Chapter 12 Principal Component Analysis

293

Solving for the preceding would result in the optimal weight combination that

satisfies our criterion. Note that the output from Excel could be slightly different from

the output you would see in Python or R, but the output of Python or R is likely to have

higher PC1 variance when compared to the output of Excel, due to the underlying

algorithm used in solving. Also note that, even though ideally we would have wanted the

difference between original and PC variance to be 0, for practical reasons of executing

the optimization using Excel solver we have allowed the difference to be a maximum of 3.

Similar to the scenario of the PCA with two independent variables, it is a good idea

to scale the inputs before processing PCA. Also, note that PC1 explains the highest

variation after solving for the weights, and hence PC2 and PC3 can be eliminated

because they explain very little of the original dataset variance.

CHOOSING THE NUMBER OF PRINCIPAL COMPONENTS TO CONSIDER

There is no single prescribed method to choosing the number of principal components. In

practice, a rule of thumb is to choose the minimum number of principal components that

cumulatively explain 80% of the total variance in the dataset.

Chapter 12 Principal Component Analysis

294

�Implementing PCA in R
PCA can be implemented in R using the built-in function prcomp. Have a look at the

following implementation (available as “PCA R.R” in github):

t=read.csv('D:/Pro ML book/PCA/pca_3vars.csv')

pca=prcomp(t)

pca

The output of pca is as follows:

The standard deviation values here are the same as the standard deviation values of PC

variables. The rotation values are the same as the weight values that we initialized earlier.

A more detailed version of the outputs can be obtained by using str(pca), the

output of which looks like the following:

Chapter 12 Principal Component Analysis

295

From this, we notice that apart from the standard deviation of PC variables and the

weight matrix, pca also provides the transformed dataset.

We can access the transformed dataset by specifying pca$x.

�Implementing PCA in Python
Implementing PCA in Python is done using the scikit learn library, as follows

(available as “PCA.ipynb” in github):

import packages and dataset

import pandas as pd

import numpy as np

from sklearn.decomposition import PCA

data=pd.read_csv('F:/course/pca/pca.csv')

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

pca.fit(data)

We see that we fit as many components as the number of independent variables and

fit PCA on top of the data.

Once the data is fit, transform the original data into transformed data, as follows:

x_pca = pca.transform(data)

pca.components_

components_ is the same as weights associated with the principal components. x_pca

is the transformed dataset.

print(pca.explained_variance_ratio_)

explained_variance_ratio_ provides the amount of variance explained by each

principal component. This is very similar to the standard deviation output in R, where

R gives us the standard deviation of each principal component. PCA in Python’s scikit

learn transformed it slightly and gave us the amount of variance out of the original

variance explained by each variable.

Chapter 12 Principal Component Analysis

296

�Applying PCA to MNIST
MNIST is a handwritten digit recognition task. A 28 × 28 image is unrolled, where each

pixel value is represented in a column. Based on that, one is expected to predict if the

output is one of the numbers between 0 and 9.

Given that there are a total of 784 columns, intuitively we should observe one of the

following:

•	 Columns with zero variance

•	 Columns with very little variance

•	 Columns with high variance

In a way, PCA helps us in eliminating low- and no-variance columns as much as

possible while still achieving decent accuracy with a limited number of columns.

Let’s see how to achieve that reduction in number of columns without losing out on

much variance through the following example (available as “PCA mnist.R” in github):

Load dataset

t=read.csv("D:/Pro ML book/PCA/train.csv")

Keep the independent variables only, as PCA is on indep. vars

t$Label = NULL

scale dataset by 255, as it is the mximum possible value in pixels

t=t/255

Apply PCA

pca=prcomp(t)

str(pca)

Check the variance explained

cumsum((pca$sdev)^2)/sum(pca$sdev^2)

Chapter 12 Principal Component Analysis

297

The output of the preceding code is as follows:

From this we can see that the first 43 principal components explain ~80% of the total

variance in the original dataset. Instead of running a model on all 784 columns, we could

run the model on the first 43 principal components without losing much information

and hence without losing out much on accuracy.

�Summary
•	 PCA is a way of reducing the number of independent variables in a

dataset and is particularly applicable when the ratio of data points to

independent variables is low.

•	 It is a good idea to scale independent variables before applying PCA.

•	 PCA transforms a linear combination of variables such that the

resulting variable expresses the maximum variance within the

combination of variables.

Chapter 12 Principal Component Analysis

299
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_13

CHAPTER 13

Recommender Systems
We see recommendations everywhere. Recommender systems are aimed at

•	 Minimizing the effort of users to search for a product

•	 Reminding users about sessions they closed earlier

•	 Helping users discover more products

For example, here are common instances of recommender systems:

•	 Recommender widgets in e-commerce websites

•	 Recommended items sent to email addresses

•	 Recommendations of friends/contacts in social network sites

Imagine a scenario in which e-commerce customers are not given product

recommendations. The customers would not be able to do the following:

•	 Identify similar products to the products they are viewing

•	 Know whether the product is fairly priced

•	 Find accessories or complementary products

That’s why recommender systems often boost sales by a considerable amount.

In this chapter, you will learn the following:

•	 To predict the rating a user would give (or likelihood a user would

purchase) an item using

•	 Collaborative filtering

•	 Matrix factorization

300

•	 Euclidian and cosine similarity measures

•	 How to implement recommendation algorithms in Excel, Python,

and R

A recommender system is almost like a friend. It infers your preferences and

provides you with options that are personalized to you. There are multiple ways of

building a recommender system, but the goal is for it to be a way of relating the user to

a set of other users, a way of relating an item to a set of other items, or a combination of

both.

Given that recommending is about relating one user/item to another, it translates to

a problem of k-nearest neighbors: identifying the few that are very similar and then basing

a prediction based on the preferences exhibited by the majority of nearest neighbors.

�Understanding k-nearest Neighbors
A nearest neighbor is the entity (a data point, in the case of a dataset) that is closest to the

entity under consideration. Two entities are close if the distance between them is small.

Consider three users with the following attributes:

User Weight

A 60

B 62

C 90

We can intuitively conclude that users A and B are more similar to each other in

terms of weight when compared to C.

Let’s add one more attribute of users—age:

User Weight Age

A 60 30

B 62 35

C 90 30

Chapter 13 Recommender Systems

301

The “distance” between user A and B can be measured as:

(() ())62 60 35 302 2- + -

This kind of distance between users is calculated similarly to the way the distance

between two points is calculated.

However, you need to be a little careful when calculating distance using multiple

variables. The following example can highlight the pitfalls of distance calculation:

Car model Max speed attainable No. of gears

A 100 4

B 110 5

C 100 5

In the preceding table, if we were measuring to see the similarity between cars using

the traditional “distance” metric, we might conclude that models A and C are most

similar to each other (even though their number of gears are different). Yet intuitively

we know that B and C are more similar to each other than A and C, because they have

identical number of gears and their max attainable speeds are similar.

The discrepancy highlights the issue of scale of variables, where one variable has a very

high magnitude when compared to the other variable. To get around this issue, typically

we would normalize the variables before proceeding further with distance calculations.

Normalizing variables is a process of bringing all the variables to a uniform scale.

There are multiple ways normalizing a variable:

•	 Divide each variable by the maximum value of the variable (bringing

all the values between –1 and 1)

•	 Find the Z-score of each data point of the variable. Z-score is (value of

data point – mean of variable) / (standard deviation of the variable).

•	 Divide each variable by the (maximum – minimum) value of the

variable (called min max scaling).

Steps like these help normalize variables, thereby preventing the issues with scaling.

Once the distance of a data point to other data points is obtained—in the case of

recommender systems, that is, once the nearest items to a given item are identified—the

system will recommend these items to a user if it learns that the user has historically

liked a majority of the nearest neighborhood items.

Chapter 13 Recommender Systems

302

The k in k-nearest neighbors stands for the number of nearest neighbors to consider

while taking a majority vote on whether the user likes the nearest neighbors or not. For

example, if the user likes 9 out of 10 (k) nearest neighbors to an item, we’ll recommend

the item to user. Similarly, if the user likes only 1 out of 10 nearest neighbors of the item,

we’ll not recommend the item to user (because the liked items are in minority).

Neighborhood-based analysis takes into account the way in which multiple users

can collaboratively help predict whether a user might like something or not.

With this background, we’ll move on and look at the evolution of recommender

system algorithms.

�Working Details of User-Based Collaborative Filtering
User-based refers, of course, to something based on users. Collaborative means using

some relation (similarity) between users. And filtering refers to filtering out some users

from all users.

To get a sense of user-based collaborative filtering (UBCF), consider the following

example (available as “ubcf.xlsx” in github):

User/ Movie Just My
Luck

Lady in
the Water

Snakes on
a Plane

Superman
Returns

The Night
Listener

You Me and
Dupree

Claudia Puig 3 3.5 4 4.5 2.5

Gene Seymour 1.5 3 3.5 5 3 3.5

Jack Matthews 3 4 5 3 3.5

Lisa Rose 3 2.5 3.5 3.5 3 2.5

Mick LaSalle 2 3 4 3 3 2

Toby 4.5 4 1

Let’s say we are interested in knowing the rating that user Claudia Puig would give to

the movie Lady in the Water. We’ll begin by finding out the most similar user to Claudia.

User similarity can be calculated in several ways. Here are two of the most common ways

of calculating similarity:

•	 Euclidian distance between users

•	 Cosine similarity between users

Chapter 13 Recommender Systems

303

�Euclidian Distance
Calculating the Euclidian distance of Claudia with every other user can be done as

follows (available in “Eucledian distance” sheet of “ubcf.xlsx” file in github):

We aren’t seeing the complete picture due to space and formatting constraints, but

essentially the same formula is applied across columns.

The distance of every other user to Claudia for each movie is as follows:

Note that the overall distance value is the average of all the distances where both

users have rated a given movie. Given that Lisa Rose is the user who has the least overall

distance with Claudia, we will consider the rating provided by Lisa as the rating that

Claudia is likely to give to the movie Lady in the Water.

Chapter 13 Recommender Systems

304

One major issue to be considered in such a calculation is that some users may be

soft critics and some users may be harsher critics. Users A and B may have implicitly

had similar experiences watching a given movie, but explicitly their ratings might be

different.

�Normalizing for a User

Given that users differ in their levels of criticism, we need to make sure that we get

around that problem. Normalization can help here.

We could normalize for a user as follows:

	 1.	 Take the average rating across all movies of a given user.

	 2.	 Take the difference between each individual movie and the

average rating of the user.

By taking the difference between a rating of an individual movie and the average

rating of the user, we would know whether they liked a movie more than the average

movie they watch, less than the average movie they watch, or equal to the average movie

they watch.

Let’s look at how this is done:

Chapter 13 Recommender Systems

305

The formulas for the above are as follows (available in “Normalizing user” sheet of

“ubcf.xlsx” file in github):

Now that we have normalized for a given user, we calculate which user is most

similar to Claudia the same way we calculated user similarity earlier. The only difference

is that now we will calculate distance based on normalized ratings, not the original

ratings:

Chapter 13 Recommender Systems

306

We can see that Lisa Rose is still the least distant (or closest, or most similar) user to

Claudia Puig. Lisa rated Lady in the Water 0.50 units lower than her average movie rating

of 3.00, which works out to ~8% lower than her average rating. Given that Lisa is the most

similar user to Claudia, we would expect Claudia’s rating to likewise be 8% less than her

average rating, which works out to the following:

3.5 × (1 – 0.5 / 3) = 2.91

�Issue with Considering a Single User

So far, we have considered the single user who is most similar to Claudia. In practice,

more is always better—that is, identifying the weighted average rating that k most similar

users to a given user give is better than identifying the rating of the most similar user.

However, we need to note that not all k users are equally similar. Some are more

similar, and others are less similar. In other words, some users’ ratings should be given

more weightage, and other users’ ratings should be given less weightage. But using the

distance-based metric, there is no easy way to come up with a similarity metric.

Cosine similarity as a metric comes in handy to solve this problem.

�Cosine Similarity
We can look at cosine similarity by going through an example. Consider the following

matrix:

Movie1 Movie2 Movie3

User1 1 2 2

User2 2 4 4

In the preceding table, we see that both users’ ratings are highly correlated with each

other. However, there is a difference in the magnitude of ratings.

Chapter 13 Recommender Systems

307

If we were to compute Euclidian distance between the two users, we would notice

that the two users are very different from each other. But we can see that the two users

are similar in the direction (trend) of their ratings, though not in the magnitude of their

ratings. The problem where the trend of users is similar but not the magnitude can be

solved using cosine similarity between the users.

Cosine similarity between two users is defined as follows:

similarity
A B

A B

i

n

i i

i

n

i
i

n

i

= () = ×
= =

= =

å

å å
cos q

A B

A B
2 2

1

1

2

1

2

A and B are the vectors corresponding to user 1 and user 2 respectively.

Let’s look how similarity is calculated for the preceding matrix:

•	 Numerator of the given formula = (1 × 2 + 2 × 4 + 2 × 4) = 18

•	 Denominator of the given formula = ()1 2 22 2 2+ + ×

()2 4 42 2 2+ + = ()9 × ()36 = 3 × 6 = 18

•	 Similarity = 18 / 18 = 1.

Based on the given formula, we can see that, on the basis of cosine similarity, we are

in a position to assign high similarity to users that are directionally correlated but not

necessarily in magnitude.

Cosine similarity on the rating matrix that we originally calculated (in the Euclidian

distance calculation) earlier would be calculated in a similar way to how we calculated

the preceding formula. The steps for cosine similarity calculation remain the same:

	 1.	 Normalize users.

	 2.	 Calculate the cosine similarity of rest of the users for a given user.

Chapter 13 Recommender Systems

308

To illustrate how we calculate cosine similarity, let’s calculate the similarity of Claudia

with every other user (available in “cosine similarity” sheet of “ubcf.xlsx” file in github):

	 1.	 Normalize user ratings:

	 2.	 Calculate the numerator part of the cosine similarity calculation:

The numerator would be as follows:

Chapter 13 Recommender Systems

309

	 3.	 Prepare the denominator calculator of cosine similarity:

	 4.	 Calculate the final cosine similarity, as follows:

We now have a similarity value that is associated between –1 and +1 that gives a

score of similarity for a given user.

We have now overcome the issue we faced when we had to consider the ratings given

by multiple users in predicting the rating that a given user is likely to give to a movie.

Users who are more similar to a given user can now be calculated.

Now the problem of predicting the rating that Claudia is likely to give to the movie

Lady in the Water movie can be solved in the following steps:

	 1.	 Normalize users.

	 2.	 Calculate cosine similarity.

	 3.	 Calculate the weighted average normalized rating.

Chapter 13 Recommender Systems

310

Let’s say we are trying to predict the rating by using the two most similar users

instead of one. We would follow these steps:

	 1.	 Identify the two most similar users who have also given a rating to

the movie Lady in the Water.

	 2.	 Calculate the weighted average normalized rating that they gave to

the movie.

In this case, Lisa and Mick are the two most similar users to Claudia who have rate

Lady in the Water. (Note that even though Toby is the most similar user, he has not rated

Lady in the Water and so we cannot consider him for rating prediction.)

�Weighted Average Rating Calculation

Let’s look at the normalized rating given and the similarity of the two most similar users:

Similarity Normalized rating

Lisa Rose 0.47 –0.5

Mick LaSalle 0.56 0.17

The weighted average rating would now be as follows:

(0.47 × –0.5 + 0.56 × 0.17) / (0.47 + 0.56) = –0.14

Potentially, Claudia’s average rating would now be reduced by 0.14 to come up with

the predicted rating of Claudia for the movie Lady in the Water.

Another way to come up with weighted average rating is based on the percent over

average rating, as follows:

Similarity Normalized rating Average rating % avg rating

Lisa Rose 0.47 –0.5 3 –0.5 / 3 = –0.16

Mick LaSalle 0.56 0.17 2.83 0.17 / 2.83 = 0.06

Weighted average normalized rating percentage would now be as follows:

(0.47 × –0.16 + 0.56 × 0.06) / (0.47 + 0.56) = –0.04

Chapter 13 Recommender Systems

311

Thus, the average rating of Claudia can potentially be reduced by 4% to come up with

the predicted rating for the movie Lady in the Water.

�Choosing the Right Approach

In recommender systems, there is no fixed technique that is proven to always work. This

calls for a typical train, validate, and test scenario to come up with the optimal parameter

combination.

The parameter combination that can be tested is as follows:

•	 Optimal number of similar users to be considered

•	 Optimal number of common movies rated together by users before a

user is eligible to be considered for similar user calculation

•	 Weighted average rating calculation approach (based on percentage

or on absolute value)

We can iterate through multiple scenarios of various combinations of the

parameters, calculate the test dataset accuracy, and decide that the combination that

gives the least error rate is the optimal combination for the given dataset.

�Calculating the Error

There are multiple ways of calculating, and the preferred method varies by business

application. Let’s look at two cases:

•	 Mean squared error (MSE) of all predictions made on the test dataset

•	 Number of recommended items that a user bought in the next

purchase

Note that although MSE helps in building the algorithm, in practice we might

be measuring our model’s performance as a business-related outcome, as in the

second case.

�Issues with UBCF
One of the issues with user-based collaborative filtering is that every user has to be

compared with every other user to identify the most similar user. Assuming there are

100 customers, this translates into the first user being compared to 99 users, the second

Chapter 13 Recommender Systems

312

user being compared to 98 users, the third to 97, and so on. The total comparisons here

would be as follows:

99 + 98 + 97 + … + 1 + 0 = 99 × (99 + 1) / 2 = 4950

For a million customers, the total number of comparisons would look like this:

999,999 × 1,000,000 / 2 = ~500,000,000,000

That’s around 500 billion comparisons. The calculations show that the number

of comparisons to identify the most similar customer increases exponentially as the

number of customers increases. In production, this becomes a problem because if

every user’s similarity with every other user needs to be calculated every day (since user

preferences and ratings get updated every day based on the latest user data), one would

need to perform ~500 billion comparisons every day.

To address this problem, we can consider item-based collaborative filtering instead

of user-based collaborative filtering.

�Item-Based Collaborative Filtering
Given that the number of computations is an issue in UBCF, we will modify the problem

so that we observe the similarity between items and not users. The idea behind item-

based collaborative filtering (IBCF) is that two items are similar if the ratings that they

get from the same users are similar. Given that IBCF is based on items and not on user

similarity, it doesn’t have the problem of performing billions of computations.

Let’s assume that there are a total of 10,000 movies in a database and 1 million

customers attracted to the site. In this case, if we perform UBCF, we would be performing

~500 billion similarity calculations. But using IBCF, we would be performing 9,999 ×

5,000 = ~ 50 million similarity calculations.

We can see that the number of similarity calculations increases exponentially as

the number of customers grows. However, given that the number of items (movie

titles, in our case) is not expected to experience the same growth rate as the number of

customers, in general IBCF is less computationally sensitive than UBCF.

The way in which IBCF is calculated and the techniques involved are very similar to

UBCF. The only difference is that we would work on a transposed form of the original movie

matrix we saw in the previous section. This way, the rows are not of users, but of movies.

Chapter 13 Recommender Systems

313

Note that although IBCF is better than UBCF in terms of computation, the number of

computations is still very high.

�Implementing Collaborative Filtering in R
In this section, we will look at the functions used to implement UBCF in R. I implemented

the functions available in the recommenderlab package in the following code, but in

practice it is recommended that you build a recommendation function from scratch to

customize for the problem in hand (the code is available as “UBCF.R” in github):

Import data and required packages

t=read.csv("D:/book/Recommender systems/movie_rating.csv")

library(reshape2)

library(recommenderlab)

Reshape data into a pivot format

t2=acast(t,critic~title)

t2

Convert it to a matrix

R<-as.matrix(t2)

Convert R into realRatingMatrix structure

realRatingMatrix is a recommenderlab sparse-matrix like data structure

r<-as(R,"realRatingMatrix")

Implement the UBCF method

rec=Recommender(r[1:nrow(r)],method="UBCF")

Predict the missing rating

recom<-predict(rec,r[1:nrow(r)],type="ratings")

str(recom)

In this code, we have reshaped our data so that it can be converted into a

realRatingMatrix class that gets consumed by the Recommender function to provide the

missing value predictions.

Chapter 13 Recommender Systems

314

�Implementing Collaborative Filtering in Python
We used a package in coming up with predictions in R, but for Python we will hand-

build a way to come up with predicting the rating a user is likely to give. In the following

code, we will create a way to predict the rating that Claudia is likely to give for the Lady

in the Water movie by considering only the most similar user to Claudia (the code is

available as “UBCF.ipynb” in github).

	 1.	 Import the dataset:

import pandas as pd

import numpy as np

t=pd.read_csv("D:/book/Recommender systems/movie_rating.csv")

	 2.	 Convert the dataset into a pivot table:

t2 = pd.pivot_table(t,values='rating',index='critic',columns='title')

	 3.	 Reset the index:

t3 = t2.reset_index()

t3=t3.drop(['critic'],axis=1)

	 4.	 Normalize the dataset:

t4=t3.subtract(np.mean(t3,axis=1),axis=0)

	 5.	 Drop the rows that have a missing value for Lady in the Water:

t5=t4.loc[t4['Lady in the Water'].dropna(axis=0).index]

t6=t5.reset_index()

t7=t6.drop(['index'],axis=1)

	 6.	 Calculate the distance of every other user to Claudia:

x=[]

for i in range(t7.shape[0]):

 x.append(np.mean(np.square(t4.loc[0]-t7.loc[i])))

t6.loc[np.argmin(x)]['Lady in the Water']

	 7.	 Calculate the predicted rating of Claudia:

np.mean(t3.loc[0]) * (1+(t6.loc[np.argmin(x)]['Lady in

the Water']/np.mean(t3.loc[3])))

Chapter 13 Recommender Systems

315

�Working Details of Matrix Factorization
Although user-based or item-based collaborative filtering methods are simple and

intuitive, matrix factorization techniques are usually more effective because they allow

us to discover latent features underlying the interactions between users and items.

In matrix factorization, if there are U users, each user is represented in K columns,

thus we have a U × K user matrix. Similarly, if there are D items, each item is also

represented in K columns, giving us a D × K matrix.

A matrix multiplication of the user matrix and the transpose of the item matrix would

result in the U × D matrix, where U users may have rated on some of the D items.

The K columns could essentially translate into K features, where a higher or lower

magnitude in one or the other feature could give us an indication of the type or genre

of the item. This gives us the ability to know the features that a user would give a higher

weightage to or the features that a user might not like. Essentially, matrix factorization is

a way to represent users and items in such a way that the probability of a user liking or

purchasing an item is high if the features that correspond to an item are the features that

the user gives a higher weightage to.

We’ll see how matrix factorization works through an example. Let’s assume that we

have a matrix of users (U) and movies (D), as follows (the dataset is available as “matrix

factorization example.xlsx” in github):

User Movies Actual

1 1 5

1 2 3

1 3

1 4 1

2 1 4

2 2

2 3

2 4 1

3 1 1

3 2 1

(continued)

Chapter 13 Recommender Systems

316

User Movies Actual

3 3

3 4 5

4 1 1

4 2

4 3

4 4 4

5 1

5 2 1

5 3 5

5 4 4

Our task is to predict the missing values in the Actual column, which indicate that

the user has not rated the movie yet.

In this scenario, the math of matrix factorization works out as follows:

	 1.	 Initialize the values of P matrix randomly, where P is a

U × K matrix. We’ll assume a value of k = 2 for this example.

A better way of randomly initializing the values is by limiting the

values to be between 0 and 1.

Chapter 13 Recommender Systems

317

In this scenario, the matrix of P will be a 5 × 2 matrix, because k = 2

and there are 5 users:

	 2.	 Initialize the values of Q matrix randomly, again where Q is a

K × D matrix—that is, a 2 × 4 matrix, because there are four

movies, as shown in the first table.

The Q matrix would be as follows:

Chapter 13 Recommender Systems

318

	 3.	 Calculate the value of the matrix multiplication of P × Q matrix.

Note that the Prediction column in the following is calculated by

the matrix multiplication of P matrix and Q matrix (I will discuss

the Constraint column in the next step):

	 4.	 Specify the optimization constraints.

The predicted value (the multiplication of each element of the

two matrices) should ideally be equal to the ratings of the big

matrix. The error calculation is based on the typical squared error

Chapter 13 Recommender Systems

319

calculation and is done as follows (note that the weight values in

P and matrices have varied because they are random numbers

and are initialized using the randbetween function, which changes

values every time Enter is pressed in Excel):

•	 Objective: Change the randomly initialized values of P and Q matrices

to minimize overall error.

•	 Constraint: No prediction can be greater than 5 or less than 1.

Chapter 13 Recommender Systems

320

The preceding objective and constraint can be specified as an optimization scenario

in Solver, as follows:

Note that once we optimize for the given objective and constraint, the optimal values

of weights in P and Q matrices are arrived at and are as follows:

Chapter 13 Recommender Systems

321

INSIGHTS ON P AND Q MATRICES

In P matrix, user 1 and user 2 have similar weightages for factors 1 and 2, so they can

potentially be considered to be similar users.

Also, the way in which user 1 and 2 have rated movies is very similar—the movies that user

1 rated highly have a high rating from user 2 as well. Similarly, the movies that user 1 rated

poorly also had low ratings from user 2.

The same goes for the interpretation for Q matrix (the movie matrix). Movie 1 and movie 4

have quite some distance between them. We can also see that, for a majority of users, if the

rating given for movie 1 is high, then movie 4 got a low rating, and vice versa.

�Implementing Matrix Factorization in Python
Notice that the P matrix and Q matrix are obtained through Excel’s Solver, which

essentially runs gradient descent in the back end. In other words, we are deriving the

weights in a manner similar to the neural networks–based approach, where we are trying

to minimize the overall squared error.

Let’s look at implementing matrix factorization in keras for the following dataset

(the code is available as “matrix factorization.ipynb” in github):

User Movies Actual

1 4 1

2 4 1

3 1 1

3 2 1

4 1 1

5 2 1

1 2 3

2 1 4

4 4 4

(continued)

Chapter 13 Recommender Systems

322

User Movies Actual

5 4 4

1 1 5

3 4 5

5 3 5

Import the required packages and dataset

import pandas as pd

ratings= pd.read_csv('/content/datalab/matrix_factorization_keras.csv')

Extract the unique users

users = ratings.User.unique()

Extract the unique movies

articles = ratings.Movies.unique()

Index each user and article

userid2idx = {o:i for i,o in enumerate(users)}

articlesid2idx = {o:i for i,o in enumerate(articles)}

Apply the index created to the original dataset

ratings.Movies = ratings.Movies.apply(lambda x: articlesid2idx[x])

ratings.User = ratings.User.apply(lambda x: userid2idx[x])

Extract the number of unique users and articles

n_users = ratings.User.nunique()

n_articles = ratings.Movies.nunique()

Define the error metric

import keras.backend as K

def rmse(y_true,y_pred):

 score = K.sqrt(K.mean(K.pow(y_true - y_pred, 2)))

 return score

Import relevant packages

from keras.layers import Input, Embedding, Dense, Dropout, merge, Flatten

from keras.models import Model

Chapter 13 Recommender Systems

323

The function Embedding helps in creating vectors similar to the way we converted a

word into a lower-dimensional vector in Chapter 8.

Through the following code, we would be able to create the initialization of P matrix

and Q matrix:

def embedding_input(name,n_in,n_out):

 inp = Input(shape=(1,),dtype='int64',name=name)

 return inp, Embedding(n_in,n_out,input_length=1)(inp)

n_factors = 2

user_in, u = embedding_input('user_in', n_users, n_factors)

article_in, a = embedding_input('article_in', n_articles, n_factors)

Initialize the dot product between user matrix and movie matrix

x = merge.dot([u,a],axes=2)

x=Flatten()(x)

Initialize the model specification

from keras import optimizers

model = Model([user_in,article_in],x)

sgd = optimizers.SGD(lr=0.01)

model.compile(sgd,loss='mse',metrics=[rmse])

model.summary()

Fit the model by specifying inputs and output

model.fit([ratings.User,ratings.Movies], ratings.Actual, nb_epoch=1000,

batch_size=13)

Now that the model is built, let’s extract the weights of the User and Movie matrices

(P and Q matrices):

User matrix

model.get_weights()[0]

Chapter 13 Recommender Systems

324

Movie matrix

model.get_weights()[1]

�Implementing Matrix Factorization in R
Although matrix factorization can be implemented using the kerasR package, we will use

the recommenderlab package (the same one we worked with for collaborative filtering).

The following code implements matrix factorization in R (available as “matrix

factorization.R” in github):

	 1.	 Import the relevant packages and dataset:

Matrix factorization

t=read.csv("D:/book/Recommender systems/movie_rating.csv")

library(reshape2)

library(recommenderlab)

	 2.	 Pre-process the data:

t2=acast(t,critic~title)

t2

Convert it as a matrix

R<-as.matrix(t2)

Convert R into realRatingMatrix data structure

RealRatingMatrix is a recommenderlab sparse-matrix like data-

structure

r <- as(R, "realRatingMatrix")

	 3.	 Use the funkSVD function to build the matrix factors:

fsvd <- funkSVD(r, k=2,verbose = TRUE)

p <- predict(fsvd, r, verbose = TRUE)

p

Chapter 13 Recommender Systems

325

Note that the object p constitutes the predicted ratings of all the

movies across all the users.

The object fsvd constitutes the user and item matrices, and they

can be obtained with the following code:

str(fsvd)

The user matrix can thus be accessed as fsvd$U, and the item matrix by fsvd$V.

The parameters are the learning rate and the epochs parameters we learned about in

Chapter 7.

�Summary
In this chapter, you have learned the following:

•	 The major techniques used to provide recommendations are

collaborative filtering and matrix factorization.

•	 Collaborative filtering is extremely prohibitive in terms of the large

number of computations.

•	 Matrix factorization is less computationally intensive and in general

provides better results.

•	 Ways to build matrix factorization and collaborative filtering

algorithms in Excel, Python, and R

Chapter 13 Recommender Systems

327
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5_14

CHAPTER 14

Implementing Algorithms
in the Cloud
Sometimes the amount of computation required to carry out a task can be enormous.

This typically happens when there is a large dataset that has a size greater than the

typical RAM size of a machine. It can also typically happen when the required processing

on the data is huge.

In such cases, it is a good idea to switch to cloud-based analysis, which can help

scale up a larger RAM size quickly. It can also avoid the need to purchase extended RAM

to resolve an issue that might not occur very frequently. However, there is a cost to use

cloud services, and certain configurations are more costly than others. You need to be

careful when choosing a configuration and be disciplined so that you know when to stop

using the cloud service.

The three major cloud providers are as follows:

•	 Google Cloud Platform (GCP)

•	 Microsoft Azure

•	 Amazon Web Services (AWS)

In this chapter, we will work towards setting up a virtual machine in all the three

cloud platforms. Once the instance is setup, we will learn about accessing Python and R

on cloud.

�Google Cloud Platform
GCP can be accessed at https://cloud.google.com. Once you set up an account, you

use the console to create a project. In the console, click Compute Engine and then click

VM instances, as shown in Figure 14-1 (VM stands for virtual machine).

https://cloud.google.com/

328

Click Create to create a new VM instance. You will see a screen like Figure 14-2.

Figure 14-1.  Selecting the VM option

Figure 14-2.  Options to create an instance

Chapter 14 Implementing Algorithms in the Cloud

329

Depending on the dataset size, customize the machine type with the required cores,

memory, and whether you need a GPU.

Next, select the operating system of your choice (Figure 14-3).

Figure 14-3.  Selecting the OS

We will perform a few operations on PuTTY. You can download PuTTYgen from

www.ssh.com/ssh/putty/windows/puttygen. Open the program and click Generate to

generate a public/private key pair. A key will be generated, as shown in Figure 14-4.

Figure 14-4.  Generating a public/private key pair in PuTTYgen

Chapter 14 Implementing Algorithms in the Cloud

http://www.ssh.com/ssh/putty/windows/puttygen

330

Click “Save private key” to save the private key. Copy the public key at the top and

paste it into the SSH Keys box on GCP, as shown in Figure 14-5.

Figure 14-5.  Pasting in the key

Click Create. That should create a new instance for you. It should also give you the IP

address corresponding to the instance. Copy the IP address and paste it in PuTTY under

Host Name.

Click SSH in the left pane, click Auth, and browse to the location where you saved the

private key, as shown in Figure 14-6.

Chapter 14 Implementing Algorithms in the Cloud

331

Enter the login name as the “Key comment” entry shown in PuTTYgen when you

were generating public and private keys back in Figure 14-4. You should now be logged

into the Google Cloud machine.

Type python, and you should be able to run Python scripts.

Be sure to delete the instance as soon as you are done with your work. Otherwise the

service may still be billing you.

�Microsoft Azure Cloud Platform
Creating a virtual machine instance in Microsoft Azure is very similar to the way it is

done in GCP. Visit https://azure.microsoft.com and set up an account.

Figure 14-6.  The Auth options

Chapter 14 Implementing Algorithms in the Cloud

https://azure.microsoft.com/

332

Create an account in Azure and log in. Then click “Virtual machines,” as shown in

Figure 14-7.

Figure 14-7.  Microsoft’s Virtual machines page

Click Add and then do the following:

	 1.	 Select the machine needed—in our case, I’m selecting Ubuntu

Server 16.04 LTS.

	 2.	 Click the default Create button.

	 3.	 Enter the machine-level details in basic configuration settings.

	 4.	 Select the size of virtual machine needed.

	 5.	 Configure the optional features.

	 6.	 Finally, create the instance.

Once the instance is created, the dashboard provides the IP address corresponding

to the instance, as shown in Figure 14-8.

Chapter 14 Implementing Algorithms in the Cloud

333

Open PuTTY (see the previous section for more on downloading and launching it)

and connect to the instance using the IP address, either by entering the password (if you

selected the password option while creating the instance) or by using the private key.

You can connect to the instance and open Python using PuTTY in a similar way as

we did in the previous section on GCP.

�Amazon Web Services
In this section, we will sign up with Amazon Web Services. Got to

https://aws.amazon.com and create an account.

Click “Launch a virtual machine,” as shown in Figure 14-9.

Figure 14-8.  The IP address you need

Chapter 14 Implementing Algorithms in the Cloud

https://aws.amazon.com/

334

On the next screen, click “Get started.” Name your instance and select the required

attributes, as shown in Figure 14-10.

Figure 14-9.  Launching a virtual machine in AWS

Chapter 14 Implementing Algorithms in the Cloud

335

Download the .pem file and click “Create this instance.” Then click “Proceed to

console.”

In the meantime,

	 1.	 Open PuTTYgen.

	 2.	 Load the .pem file.

	 3.	 Convert it into a .ppk file.

	 4.	 Save the private key, as shown in Figure 14-11.

Figure 14-10.  Setting up your instance

Chapter 14 Implementing Algorithms in the Cloud

336

Go back to the AWS console, where the screen looks like Figure 14-12.

Figure 14-11.  Saving the private key

Figure 14-12.  The AWS console

Click the Connect button. Note the example given in the pop-up that appears

(Figure 14-13).

Chapter 14 Implementing Algorithms in the Cloud

337

In the highlighted part of Figure 14-13, the string after the @ is the host name.

Copy it, open PuTTY, and paste the host name into the Host Name box in the PuTTY

Configuration screen, as shown in Figure 14-14.

Figure 14-13.  The example

Chapter 14 Implementing Algorithms in the Cloud

338

Back in Figure 14-13, the word just before the @ is the username. Type it into the

“Auto-login username” box in PuTTY after you select “Data” in panel in the left, as shown

in Figure 14-15.

Figure 14-14.  Adding the host name

Chapter 14 Implementing Algorithms in the Cloud

339

Click SSH to expand it, click Auth, and browse to the .ppk file created earlier. Click

Open, as shown in Figure 14-16.

Figure 14-15.  Adding the username

Chapter 14 Implementing Algorithms in the Cloud

340

Now you should be able to run Python on AWS.

�Transferring Files to the Cloud Instance
You can transfer files from your local machine to your cloud instance in all three

platforms using WinSCP. If you don’t already have it installed, download WinSCP from

www.winscp.net and install it. Open WinSCP and you should see a login screen similar

to Figure 14-17.

Figure 14-16.  Setting the private key

Chapter 14 Implementing Algorithms in the Cloud

http://www.winscp.net/

341

Enter the host name and username similar to how you entered them in PuTTY. In

order to enter the .ppk file details, click the Advanced button.

Click Authentication in the SSH section and provide the location of the .ppk file, as

shown in Figure 14-18.

Figure 14-17.  The WinSCP login screen

Chapter 14 Implementing Algorithms in the Cloud

342

Click OK and then click Login.

Now you should be able to transfer files from your local machine to the virtual

instance.

Another way to transfer files is to upload them into some other cloud storage (for

example, Dropbox), obtain a link for the location of the file, and download it to the

virtual instance.

�Running Instance Jupyter Notebooks from Your
Local Machine
You can run Jupyter Notebooks from your local machine by running the following code

on Linux instances in any of GCP, AWS, or Azure:

sudo su

wget http://repo.continuum.io/archive/Anaconda3-4.1.1-Linux-x86_64.sh

bash Anaconda3-4.1.1-Linux-x86_64.sh

Figure 14-18.  Setting the private key

Chapter 14 Implementing Algorithms in the Cloud

343

jupyter notebook --generate-config

vi jupyter_notebook_config.py

Insert the following code by pressing the I key:

c = get_config()

c.NotebookApp.ip = '*';

c.NotebookApp.open_browser = False

c.NotebookApp.port = 5000

Press Escape, type :wq, and press Enter.

Type the following:

sudo su

jupyter-notebook --no-browser --port=5000

Once the Jupyter Notebook opens, go to a browser on the local machine and type

the IP address of the virtual instance, along with the port number into the address bar

(make sure that the firewall rules are configured to open port 5000). For example, if the

IP address is http://35.188.168.71, then type http://35.188.168.71:5000 into the

browser’s address bar at the top of the screen.

You should be able to see the Jupyter environment on your local machine that is

connected to the virtual instance (Figure 14-19).

�Installing R on the Instance
R does not come installed by default on the instance. You can install R in Linux as

follows:

sudo apt-get update

sudo apt-get install r-base

Figure 14-19.  The Jupyter environment

Chapter 14 Implementing Algorithms in the Cloud

http://35.188.168.71/
http://35.188.168.71:5000/

344

Now type R in your terminal:

R

You should now be able to run R code in the virtual instance.

�Summary
In this chapter, you learned the following:

•	 How to set up and open a virtual instance on the three major cloud

platforms

•	 How to run Python/R on the three platforms

•	 How to transfer a file into the cloud environment

Chapter 14 Implementing Algorithms in the Cloud

345
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5

APPENDIX

�Basics of Excel,
R, and Python
This chapter introduces the three tools mentioned often in this book: Microsoft Excel

and the two programming languages R and Python.

�Basics of Excel
In Microsoft Excel, each cell is represented by numbers in rows and letters in columns.

For example, the following highlighted cell is the cell D4:

Cells can be referenced by specifying the = symbol followed by the cell we are trying

to refer to. For example, if we want the cell D4 to reflect the value in cell A1, we would

type it in as follows:

https://doi.org/10.1007/978-1-4842-3564-5

346

Pressing F2 gets you to the formula corresponding to a cell.

We can do multiple manipulations on top of a given cell value with the various

functions built-in to Excel. For example, here’s how to equate the cell value of D4 to the

exponential of the cell value of A1:

Excel provides an optimization tool that comes in handy in various techniques

discussed in this book, called the Solver. Excel Solver is an add-in that must be installed.

Once installed, it’s available in the Data tab in the Excel ribbon at the top.

A typical Solver looks like Figure A-1.

Figure A-1.  A typical Solver

In the Set Target Cell part of Solver, you can specify the target that needs to be

worked on.

In the Equal To section, you specify the objective—whether you want to minimize

the target, maximize it, or set it to a value. This comes in very handy in scenarios where

the target is the error value and we want to minimize the error.

Appendix Basics of Excel, R, and Python

347

The next section, “By Changing Cells”, specifies the cells that can be changed to

achieve the objective.

Finally, the Subject to the Constraints section specifies all the constraints that govern

the objective.

Clicking the Solve button gives us the optimal cell values that achieve our objective.

Solver works using multiple algorithms, all of which are based on back-propagation

(a technique discussed in detail in Chapter 7).

There are a lot more functionalities in Excel that can be very helpful, but for the

purposes of this book—to show you how the algorithms work—you are in good shape if

you understand Solver and cell linkages well.

�Basics of R
The R programming language is an offshoot of a programming language called S. R

was developed by Ross Ihaka and Robert Gentleman from the University of Auckland,

New Zealand. It was primarily adopted by statisticians and is now the de facto standard

language for statistical computing.

•	 R is data analysis software: Data scientists, statisticians, analysts, and

others who need to make sense of data use R for statistical analysis,

predictive modeling, and data visualization.

•	 R is a programming language: You do data analysis in R by writing

scripts and functions in the R programming language. R is a

complete, interactive, object-oriented language. The language

provides objects, operators, and functions that make the process of

exploring, modeling, and visualizing data a natural one. Complete

data analyses can often be represented in just a few lines of code.

•	 R is an environment for statistical analysis: Available in the R

language are functions for virtually every date manipulation,

statistical model, or chart that the data analyst could ever need.

•	 R is an open source software project: Not only does this mean that you

can download and use R for free, but the source code is also open

for inspection and modification to anyone who wants to see how the

methods and algorithms work under the hood.

Appendix Basics of Excel, R, and Python

348

�Downloading R
R works on many operating systems, including Windows, Macintosh, and Linux. Because

R is free software, it is hosted on many different servers (mirrors) around the world and

can be downloaded from any of them. For faster downloads, you should choose a server

close to your physical location. A list of all available download mirrors is available at

www.r-project.org/index.html. Click Download R on the front page to choose your

mirror for downloading.

You may notice that many of the download URLs include the letters CRAN. CRAN

stands for the Comprehensive R Archive Network, and it ensures that you have the most

recent version of R.

Once you have chosen a mirror, at the top of your screen you should see a list of the

versions of R for each operating system. Choose the R version that works on your

operating system (also, you should download base R), and then click the download link

to download.

�Installing and Configuring RStudio
RStudio is an integrated development environment (IDE) dedicated to R development.

RStudio requires a pre-installed R instance, and in RStudio config, an R version must

be set (usually it is auto-set by RStudio when it is installed). RStudio is a more user-

friendly version of R compared to the native R version.

	 1.	 Go to www.rstudio.com/products/rstudio/download/.

	 2.	 Click the Download RStudio Desktop button.

	 3.	 Select the installation file for your system.

	 4.	 Run the installation file.

	 5.	 RStudio will be installed on your system. It normally detects your

latest installed R version automatically. Ideally, you should be able

to use R from within RStudio without extra configuration.

Appendix Basics of Excel, R, and Python

http://www.r-project.org/index.html
http://www.rstudio.com/products/rstudio/download/

349

�Getting Started with RStudio
RStudio displays the main windows shown in Figure A-2.

You can perform various functions in R, as follows (code available in github as

“R basics.R”):

#Basic calculations

1+1

2*2

#Logical operators

1>2

1<2

1&0

1|0

#Creating a vector

n = c(2, 3, 5,6,7)

s = c("aa", "bb", "cc", "dd", "ee")

Figure A-2.  RStudio’s main windows

Appendix Basics of Excel, R, and Python

350

s

s = c("bb", 1)

s

a=c(n,s)

#Creating a list

x = list(n, s)

#Creating a matrix

as.matrix(n)

as.matrix(s)

#as.matrix(c(n,s),nrow=5,ncol=2,byrow=TRUE)

help(as.matrix)

matrix(c(1,2,3, "a","b","c"), nrow = 3, ncol = 2)

matrix(c(n,s), nrow = 5, ncol = 2)

Importing datasets

help(read)

t=read.csv("D:/in-class/Titanic.csv")

t2=read.table("D:/in-class/credit_default.txt")

#In case there is an issue with importing dataset, consider specifying

quote=, as below

t3=read.csv("D:/in-class/product_search.csv",quote="\"")

Structure of dataset

t=read.csv("D:/in-class/Titanic.csv")

str(t) # gives us quite a few information about the dataset

class(t) # typically, the imported datasets as always imported as data.

frame objects

dim(t) # dimension of an abject (data.frame)

nrow(t) # number of rows

ncol(t) # number of columns

colnames(t) # specify column names

class(t$Survived) # class of a variable

head(t) # gives us the first few rows of a dataset

t[1,1] # gives us the value in first row & first column. Note the syntax:

[rows,columns]

Appendix Basics of Excel, R, and Python

351

t[1:3,1] # gives us the values in first 3 rows of 1st column

t[c(1,100,500),]

t[1:3,] # gives us the values in first 3 rows of all columns (note that

when we dont specify the filtering condition in column index, the result

includes all columns)

t$Survived[1:3]# gives us the values of first 3 rows of "Survived" variable

t[c(1,4),-c(1,3)] # c() is a function to get a combination of values.

c(1,4) gives us the first & 4th row. -c(1) excludes the first column

t[c(1,4),c("Survived","Fare")] # c() is a function to get a combination of

values. c(1,4) gives us the first & 4th row. -c(1) excludes the first column

t[1:3,"Survived"]

Data manipulation

t$PassengerId=NULL

summary(t)

t$unknown_age=0

t$unknown_age=ifelse(is.na(t$Age),1,0) # the syntax here is,

ifelse(condition, value if condition is true, value if condition is false)

is.na() function helps us in identifying if there any NA values in

dataset. Be sure to remove or impute (replace) NA values within a dataset

unique(t$Embarked) # gives all the unique values within a variable

table(t$Embarked) # table gives a count of all the unique values in dataset

mean(t$Age) # mean as a function

sum(t$Age)

mean(t$Age,na.rm=TRUE) # na.rm=TRUE helps in removing the missing values,

if they exist

t$Age2=ifelse(t$unknown_age==1,mean(t$Age,na.rm=TRUE),t$Age) # one

initializes a new variable within a dataset by using the $ operator & the

new variable name

summary(t) # summary is typically the first step performed after importing

dataset

order(t$Age2) # order function is used to sort dataset. It gives out the

index of rows that a value is sorted to

t=t[order(t$Age2),] # t is sorted based on the order of age

mean(t$Survived[1:50])

mean(t$Survived[(nrow(t)-50):nrow(t)])

Appendix Basics of Excel, R, and Python

352

t2=t[1:50,]

t_male=t[t$Sex=="male",] # one can filter for criterion by specifying the

variable name with a == and the value it is to be filtered to

t_female=t[t$Sex=="female",]

mean(t_male$Survived)

mean(t_female$Survived)

t2=t[t$Sex=="male" & t$Age2<10,]

mean(t2$Survived)

t2=t[t$Sex=="female" | t$Age2<10,]

mean(t2$Survived)

install.packages("sqldf")

library(sqldf)

t3=sqldf("select sex,avg(survived) from t group by sex")

SQL like filtering or aggregation can be done using the sqldf function

t$age3=ifelse(t$Age2<10,1,0)

t2=t[,c("Age2","Sex","Survived")] # one can filter for the columns of

interest y specifying the c() function with the variables that are needed

help(aggregate)

aggregate(t$Survived,by=list(t$Sex,t$Pclass),sum)

aggregate function works similar to sqldf where grouping operations can

be done

#seq function is used to generate numbers by a given step size.

seq(0,1,0.2) gives us c(0,0.2,0.4,0.6,0.8,1)

#quantile gives us the values at the various percentiles specified

help(quantile)

summary(t)

t$age3=as.character(t$Age) # as.character function converts a value into a

character variablle

quantile(t$Age2,probs=seq(0,0.5,0.1))[2] # gives us the second value in the

output of quantile function

x=quantile(t$Age2,probs=seq(0,1,0.1))[2]

t2=t[t$Age2<x,]

mean(t2$Survived)

Appendix Basics of Excel, R, and Python

353

t$less_than_10=ifelse(t$Age2<x,1,0)

aggregate(t$Survived,by=list(t$Sex,t$less_than_10),mean) # aggregation can

be done over multiple variables by using c() function

t2=t[!t$Age2<x,] # ! is used as a engation statement

mean(t2$Survived)

Loops

t=read.table("D:/in-class/credit_default.txt")

for(i in 1:3){

 print(i)

}

summary(t)

a good idea is to note the difference between mean & median values of

variables

mean(t$DebtRatio)

median(t$DebtRatio)

t2=t

it's a good practcie to test out the code of for loop before looping it

through, by assigning a certain value of i & test out the for loop code

i=2

t2[,i]=ifelse(is.na(t2[,i]),median(t2[,i],na.rm=TRUE),t2[,i])

t2[,i]=ifelse(t2[,i]<median(t2[,i],na.rm=TRUE),"Low","High")

print(aggregate(t2$SeriousDlqin2yrs,by=list(t2[,i]),mean))

for(i in 1:ncol(t2)){

 t2[,i]=ifelse(is.na(t2[,i]),median(t2[,i],na.rm=TRUE),t2[,i])

}

below is an exercise where we are imputing missing value with median

values & then flagging variables as high when the value is above median

value & low when the value is below median value

for(i in 2:ncol(t2)){

 t2[,i]=ifelse(is.na(t2[,i]),median(t2[,i],na.rm=TRUE),t2[,i])

 t2[,i]=ifelse(t2[,i]<median(t2[,i],na.rm=TRUE),"Low","High")

 print(colnames(t2[i]));

Appendix Basics of Excel, R, and Python

354

 print(aggregate(t2$SeriousDlqin2yrs,by=list(t2[,i]),mean))

}

df=data.frame(group=c("a","b"),avg=c(2,2))

#joins

search=read.csv("D:/in-class/product_search.csv",quote="\"")

descriptions=read.csv("D:/in-class/product_descriptions.csv",quote="\"")

summary(search)

colnames(search)

colnames(descriptions)

help(merge)

in a typical merge function, we have to specify the x (first) table, the

y (second) table to which we are joining the first table

we would also have to specify the variable based on which we are joining

the datasets using the "by" parameter

in case the column name of by parameter is different in datasets, we can

use by.x & by.y

by default merge does an inner join (inner join is when only the values

that are common in both tables are joined)

all.x=TRUE helps us do a left join (left join is when all the values in x

table are retained even if some of them do not have a match in the second

table)

all.y = TRUE does a right join where all the values in right (second)

table are retained

assume that x table has productid as (1,2,3) & right (y) table has

productid as (1,5,6)

inner join of these two tables gives us the values of only productid =1

(as it is the only one in common)

left join gives us the information of (1,2,3) however, the info of pid 1

will be full and info of pid 2,3 would be blank, as right table does not

have info about these 2 pids

right join givs the information of (1,5,6) where we have pid 1 info

completely and info of 5,6 is missing

search_descriptions=merge(search,descriptions,by="product_uid",all.x=TRUE)

search_descriptions1=merge(search,descriptions,by="product_uid",all.y=TRUE)

Appendix Basics of Excel, R, and Python

355

search_descriptions2=merge(descriptions,search,by="product_uid",all.x=TRUE)

nrow(search_descriptions)

nrow(search_descriptions1)

nrow(search_descriptions2)

search_descriptions2$missing_id=ifelse(is.na(search_descriptions2$id),1,0)

sum(search_descriptions2$missing_id)

x=search_descriptions2[search_descriptions2$missing_id==0,]

length(unique(x$Product_uid))

system.time(search_descriptions<-merge(search,descriptions,by="product_

uid",all.x=TRUE))

note the difference in speed between base "merge" statement & fread/

data.table "merge" statment

install.packages("data.table")

library(data.table)

search=fread("D:/in-class/product_search.csv")

descriptions=fread("D:/in-class/product_descriptions.csv")

system.time(descriptions<-read.csv("D:/in-class/product_descriptions.csv"))

system.time(descriptions<-fread("D:/in-class/product_descriptions.csv"))

write.csv(search,"D:/in-class/search_output.csv",row.names=FALSE)

help(merge)

search_descriptions=merge(search,descriptions,by="product_uid",all.x=TRUE)

system.time(search_descriptions<-merge(search,descriptions,by="product_

uid",all.x=TRUE))

writing custom functions

square = function(x) {x*x}

square(13.5)

square("two")

addition = function(x,y) {x+y}

tt=as.data.frame(quantile(t$Age2,probs=seq(0,1,0.1)))

Appendix Basics of Excel, R, and Python

356

Other functions relevant to various machine learning techniques are discussed in

the respective chapters.

�Basics of Python

Downloading and installing Python
For the purposes of this book, we will be using Python 3.5 (which is available in archived

versions), the Anaconda version of which you can download from www.continuum.io/

downloads.

Once the file is downloaded, install with all the default conditions in the installer.

Once Anaconda is installed, search for “Anaconda prompt,” as shown in Figure A-3.

Figure A-3.  Searching for Anaconda prompt

Appendix Basics of Excel, R, and Python

http://www.continuum.io/downloads
http://www.continuum.io/downloads

357

Figure A-4.  The Anaconda prompt

It takes a while for the prompt to appear (~1 minute). It looks similar to any

command line or terminal program, as shown in Figure A-4.

Once you are able to type in the prompt, type jupyter notebook. A new web page

opens up, as shown in Figure A-5.

Click the New button and then click Python 3, as shown in Figure A-6.

Figure A-5.  The Jupyter web page

Figure A-6.  Selecting Python 3

Appendix Basics of Excel, R, and Python

358

A new code editor page should appear, something like Figure A-7.

Type 1+1 in the space and press Shift+Enter to see if everything is working fine. It

should look like Figure A-8.

�Basic operations in Python
The following code shows some basic Python code (available as “Python basics.ipynb” in

github).

Python can perform basic calculator type operations

1 + 1

2 * 3

1 / 2

2 ** 4

exponential

4 % 2

modulus operator

5 % 2

7//4

Figure A-7.  The code editor

Figure A-8.  The result of the addition

Appendix Basics of Excel, R, and Python

359

values can be assigned to variables

name_of_var = 2

x = 2

y = 3

z = x + y

strings can also be assigned to variables

x = 'hello'

Lists are very similar to arrays

They are a combination of numbers

[1,2,3]

A list can have multiple types of data - numeric or character

A list can also have another list

['kish',1,[1,2]]

A list can be assigned to an object, just like a value gets assigned to a

variable

my_list = ['a','b','c']

just like we have a word and its corresponding value in physical

dictionary

we have a key in place of word & value in place of meaning in python

dictionary

Dictionaries help in mapping one value to another

d = {'key1':'item1','key2':'item2'}

d['key1']

d.keys()

A boolean is a true or false value

True

False

#Basic Python implements all of the usual operators for Boolean logic,

but uses English words rather than symbols

A package called "pandas" (we will work on it soon) uses & and | symbols

though for and ,

or operations

t = True

f = False

Appendix Basics of Excel, R, and Python

360

print(type(t)) # Prints "<type 'bool'>"

print(t and f) # Logical AND; prints "False"

print(t or f) # Logical OR; prints "True"

print(not t) # Logical NOT; prints "False"

print(t != f) # Logical XOR; prints "True"

Sets can help obtain unique values in a collection of elements

{1,2,3}

{1,2,3,1,2,1,2,3,3,3,3,2,2,2,1,1,2}

1 > 2

1 < 2

1 >= 1

1 <= 4

Please note the usage of == instead of single =

1 == 1

'hi' == 'ahoy'

Note how we used "and", "or"

(1 > 2) and (2 < 3)

Writing a for loop

seq = [1,2,3,4,5]

for item in seq:

 print(item)

for i in range(5):

 print(i)

Writing a function

def square(x):

 return x**2

out = square(2)

st = 'hello my name is Kishore'

st.split()

�Numpy
Numpy is a fundamental package in Python which has some extremely useful functions

for mathematical computations as well as abilities to work on multi dimensional data.

Moreover it is very fast. We will go through a small demo of how fast numpy is when

compared to traditional way of calculation, in the below code:

Appendix Basics of Excel, R, and Python

361

In the below code, we are trying to sum up the square of first 10 Million

numbers

packages can be imported as follows

import numpy as np

a=list(range(10000000))

len(a)

import time

start=time.time()

c=0

for i in range(len(a)):

 c= (c+a[i]**2)

end=time.time()

print(c)

print("Time to execute: "+str(end-start)+"seconds")

a2=np.double(np.array(a))

import time

start=time.time()

c=np.sum(np.square(a2))

end=time.time()

print(c)

print("Time to execute: "+str(end-start)+"seconds")

Once you implement the code, you should notice that there is a >100X improvement

over traditional way of calculation using Numpy.

�Number generation using Numpy
notice that np automatically outputted zeroes

np.zeros(3)

we can also create n dimensional numpy arrays

np.zeros((5,5))

similar to zeros, we can create arrays with a value of 1

Appendix Basics of Excel, R, and Python

362

np.ones(3)

np.ones((3,3))

not just ones or zeros, we can initialize random numbers too

np.random.randn(5)

ranarr = np.random.randint(0,50,10)

returns the max value of array

ranarr.max()

returns the position of max value of the array

ranarr.argmax()

ranarr.min()

ranarr.argmin()

�Slicing and indexing
arr_2d = np.array(([5,10,15],[20,25,30],[35,40,45]))

#Show

arr_2d

#Indexing row

the below selects the second row, as index starts form 0

arr_2d[1]

Format is arr_2d[row][col] or arr_2d[row,col]

Getting individual element value

the below gives 2nd row first column value

arr_2d[1][0]

Getting individual element value

same as above

arr_2d[1,0]

if, we need the 2nd row & only the first & 3rd column values - the below

will do the job

arr_2d[1,[0,2]]

2D array slicing

Appendix Basics of Excel, R, and Python

363

#Shape (2,2) from top right corner

you can read the below as - select all rows till 2nd index & select all

columns from 1st index

arr_2d[:2,1:]

�Pandas
Pandas is a library that helps us in generating data frames that enable us in working with

tabular data. In this section, we will learn about indexing and slicing data frames and

also learn about additional functions in the library.

�Indexing and slicing using Pandas
import pandas as pd

create a data frame

a data frame has certain rows and columns as specified

give the index values of the created data frame

also, specify the column names of this data frame

df = pd.DataFrame(randn(5,4),index='A B C D E'.split(),columns='W X Y

Z'.split())

select all the values in a column

df['W']

select columns by specifying column names

df[['W','Z']]

selecting certain rows in a dataframe

df.loc[['A']]

if multiple rows and columns are to be selected - specify the index

df.loc[['A','D'],['W','Z']]

Create a new column

df['new'] = df['W'] + df['Y']

drop a column

not the usage of axis=1 - which stands for doing operation at a column

level

df.drop('new',axis=1)

Appendix Basics of Excel, R, and Python

364

we can specify the condition based on which we want to filter the data

frame

df.loc[df['X']>0]

�Summarizing data
reading a csv file into dataframe

path="D:/in-class/train.csv"

df=pd.read_csv(path)

fetching the columns names

print(df.columns)

if else condition on data frames is accomplished using np.where

notice the use of == instead of single =

df['Stay_In_Current_City_Years2']=np.where(df['Stay_In_Current_City_

Years']=="4+",4, df['Stay_In_Current_City_Years'])

specify row filtering conditions

df2=df.loc[df['Marital_Status']==0]

get the dimension of the dataframe

df2.shape

extract the unique values of a column

print(df2['Marital_Status'].unique())

extract the frequency of the unique values of a column

print(df2['Marital_Status'].value_counts())

Appendix Basics of Excel, R, and Python

365
© V Kishore Ayyadevara 2018
V. K. Ayyadevara, Pro Machine Learning Algorithms, https://doi.org/10.1007/978-1-4842-3564-5

Index

A
Absolute error, 5–6
Accuracy measure

depth of tree, 114–115
number of tree, 113–114

Activation functions
definition, 137
in Excel, 143–145
sigmoid function, 142

Adaptive boosting (AdaBoost)
high-level algorithm, 126
weak learner, 127–129, 131

Alice dataset
build model, 236
encode output, 236
import package, 234
iterations, 238
normalize file, 235
one-hot-encode, 235
read dataset, 234
run model, 237–238
target datasets, 235

Amazon Web Services (AWS), 333
console, 336
host name, 338
setting private key, 340
username, adding, 339
in VM, 334–335

Area under the curve (AUC), 11, 67–68
Artificial neural network, see Neural

network

B
Back propagation

in CNN, 209
definition, 146
in Excel, 146–148
learning rate, 146

Bagging, see Bootstrap aggregating
Bias term, 19
Bootstrap aggregating, 107

C
Cloud-based analysis

amazon web services, 333
file transfer, 340
GCP, 327
Jupyter Notebooks, 342
Microsoft Azure, 331
R on instance, 343

Clustering, 12, 259–260
ideal clustering, 261
informed locations, 265
k-means, 262–264, 274, 275
middle locations, 266
optimal K value, 276–277
process, 264
random locations, 264
reassigning households, 267
recomputing middles, 268
significance, 276

https://doi.org/10.1007/978-1-4842-3564-5

366

store clusters for performance
comparison, 260–261

top-down vs. bottom-up clustering, 278
use-case, 280

Collaborative filtering, 313, 314
Confusion matrix, 6–7
Continuous bag of words (CBOW), 173–174
Continuous independent variables

continuous dependent variable and, 95–97
decision tree for, 85–86
and discrete variables, 93
response variable, 94

Convolutional neural network (CNN)
backward propagation, 209
convolution

definition, 187
max pooling, 190
one pooling step after, 190, 192–194
pooling, 189–190
prediction, 203–205
ReLU activation function, 189
smaller matrix, 187–188

data augmentation, 212–213
in Excel, 194–202
feed forward network, 206
flattening process, 205–206
fully connected layer, 205–206
image of pixels, 180
LeNet, 207, 209
in R, 214
three-convolution pooling layer, 210–212

Cosine similarity
average rating, 310
error, calculation, 311
parameter combination, 311

Cross entropy, 56
Cross-validation technique, 4

Customer tweets
convert to lowercase, 240
embedding layer, 243
index value, 240–241
map index, 241
packages, 239–240
sequence length, 242
train and test datasets, 242

D
Data augmentation, 212–213
Decision tree

branch/sub-tree, 74
business user, 71
child node, 74
common techniques, 100
components, 72–74
continuous independent variables

(see Continuous independent
variables)

decision node, 74
multiple independent variables, 88,

90–91, 93, 98
overfitting, 100
parent node, 74
plot function, 101
in Python, 99–100
in R, 99
root node (see Root node)
rules engine, 73
splitting process, 73
terminal node, 74
visualizing, 101–102

Deep learning, 137
Dependent variable, 18, 45, 49
Discrete independent variable, 93, 97–98
Discrete values, 49–51

Clustering (cont.)

Index

367

E
Entropy, 56
Euclidian distance

issue with single user, 306
user normalization, 304–305

F
Feature generation process, 14
Feature interaction process, 14
Feed forward network, 206
Fetch data, 12
File transfer

setting private key, 342
WinSCP login, 341

Flattening process, 205–206
Forward propagation

hidden layer, 140–141
synapses, 139–140
XOR function, 138

Fraudulent transaction, 61
F-statistic, 35
Fully connected layer, 205–206

G
Gini impurity, 79, 81–82
Google Cloud Platform (GCP), 327

Auth options, 331
key pair in PuTTYgen, 329–330
selecting OS, 329
VM option, 328

Gradient Boosting Machine (GBM)
algorithm, 118–119, 121, 123
AUC, 121, 123
column sampling, 132
decision tree, 118
definition, 117

in Python, 132–133
in R, 133
row sampling, 132
shrinkage, 123–124, 126

Gradient descent neural networks, 24, 29
definition, 148
known function, 148–151

H
Hierarchical clustering, 278, 280
Hyper-parameters, 4

I, J
Ideal clustering, 261
IMDB dataset, 256–257
Independent variable, 18, 45
Information gain, 75–76
Integrated development

environment (IDE), 348
Item-based collaborative

filtering (IBCF), 312

K
Kaggle, 4–5
keras framework

in Python, 157–160
in R, 163, 165

K-means clustering algorithm, 268
betweenss, 274
cluster centers, 274
dataset, 269–271
properties, 271–272
totss, 273
tot.withinss, 274

K-nearest neighbors, 300–302

Index

368

L
Leaf node, see Terminal node
Learning rate, 146, 152
Least squares method, 57, 59
Linear regression, 2

causation, 18
correlation, 18
definition, 17
dependent variable, 18, 45
discrete values, 49–51
error, 45, 46
homoscedasticity, 46
independent variable, 18, 45
multivariate (see Multivariate

linear regression)
simple vs. multivariate, 18

Logistic regression
accuracy measure, 62
AUC metric, 67–68
cumulative frauds, 66–67
definition, 49
error measure, 63–64
in Excel, 54–56
fraudulent transaction, 61
independent variables, 69
interpreting, 53
probability, 68
in Python, 61
in R, 59, 61
random guess model, 62–63
sigmoid curve to, 53
time gap, 69

Log/squared transformation, 13
Long short-term memory (LSTM)

architecture of, 245
cell state, 246
forget gate, 246

for sentiment classification, 255–256
toy model

build model, 249
documents and labels, 248
in Excel, 251, 253–255
import packages, 247
model.layers, 250
one-hot-encode, 248
order of weights, 250
pad documents, 248

Loss optimization functions, 155–157

M
Machine learning

building, deploying, testing,
and iterating, 15

classification, 2
e-commerce transactions, 7–10
overfitted dataset, 2–3
productionalizing model, 14
regression, 1
supervised/unsupervised, 1
validation dataset, 3–5

Matrix factorization, 315–316, 318
constraint, 319
objective, 319
in Python, 321–322
in R, 323–324

Mean squared error (MSE), 311
Measures of accuracy

absolute error, 5–6
confusion matrix, 6–7
root mean square error, 6

Microsoft Azure
IP address, 333
VM, page, 332

Microsoft Excel, 345–347

Index

369

Missing values, 13
MNIST, 296
Multicollinearity, 43
Multivariate linear regression, 19

coefficients, 44
in Excel, 40–41
multicollinearity, 43
non-significant variable, 42
observations, 44
problem, 38–39
in Python, 42
in R, 41

N
Negative sampling, 175
Neural network

activation functions
(see Activation functions)

back propagation, 138
backward propagation

definition, 146
in Excel, 146–148
learning rate, 146

forward propagation
definition, 138
hidden layer, 140–141
synapses, 139–140
XOR function, 138

hidden layer, 136–137
keras framework

in Python, 157, 159–160
in R, 163, 165

loss optimization functions, 155–157
in Python, 157
scaling, 156–157
structure of, 136

synapses, 138
Word2vec (see Word2vec model)

Normalizing variables, 301
Null deviance, 34–35

O
Outliers, 13
Overall squared error, 23–24

P, Q
Pooling, 189–190
Principal component analysis (PCA), 11,

283
data scaling, 291
dataset, 286
MNIST, 296–297
multiple variables, 291, 293
objective and constraints, 287–289
in Python, 295
in R, 294–295
relation plot, 284
variables, 286, 290

Pruning process, 74
Python, 356

Anaconda prompt, 356
coding editor, 358
Jupyter web page, 357

R
Random forest

algorithm for, 107
definition, 105
depth of trees, 114–115
entropy, 111–112

Index

370

error message, 109
factor variable, 109–110
importance function, 110
MeanDecreaseGini, 110
missing values, 108–109
movie scenario, 105–106
number of trees, 113–114
parameters, 112–114
in Python, 116
rpart package, 108
test dataset, 110

Receiver operating
characteristic (ROC) curve, 8

Recurrent neural networks (RNNs)
alice dataset (see Alice dataset)
customer tweets

convert to lowercase, 240
embedding layer, 243
index value, 240–241
map index, 241
packages, 239–240
sequence length, 242
train and test datasets, 242

exploding gradient, 245
memory in hidden layer, 219–220
with multiple steps, 243–244
multiple way architecture, 217–218
in R, 256–257
simpleRNN function, 228
text mining techniques, 218–219
“this is an example”

calculation for hidden layer, 223
encoded words, 221
matrix multiplication, 223
structure, 221

time step, 224–225, 227
weight matrix, 222

toy model
in Excel, 230–231, 233–234
initialize documents, 228
same size, 228
single output, 229

vanishing gradient, 244
ReLU activation function, 189
Response variable, 94
Root mean squared

error (RMSE), 6, 29–30
Root node, 73
R programming language, 347, 348
R squared, 34
RStudio, 349–354, 356

S
Sigmoid function, 142

features, 52
to logistic regression, 53
mathematical formula, 52

Simple linear regression
bias term, 19
coefficients section, 32–33
complicating, 26–27, 29
in Excel, 25–26
F-statistic, 35
gradient descent, 24, 29
vs. multivariate, 18
null deviance, 34
overall squared error, 23–24
pitfalls, 37–38
in Python, 36–37
in R, 30–31

Random forest (cont.)

Index

371

representation, 19
residuals, 31–32
RMSE, 29–30
R squared, 34
slope, 20
solving, 20, 22–23
SSE, 34

Softmax
activation, 154
binary classification, 153
cross entropy error, 154–155
one-hot-encode, 153

Splitting process
definition, 73
disadvantage of, 84
Gini impurity, 79, 81–82
information gain, 75–76
sub-nodes, 82–84
uncertainty

calculating, 75
measure improvement in, 77–78
original dataset, 76

Squared error, 23–24
Stochastic gradient descent, see Gradient

descent neural networks
Sum of squared error (SSE), 34
Supervised learning, 1

T
Terminal node, 74
Top-down clustering, 278
Toy model

LSTM
build model, 249
documents and labels, 248

in Excel, 251, 253–255
import packages, 247
model.layers, 250
one-hot-encode, 248
order of weights, 250
pad documents, 248

RNNs
in Excel, 230–233
initialize documents, 228
same size, 228
single output, 229
time steps, 228

Traditional neural network (NN)
highlight image, 180, 182–183
limitations of, 179
original average image, 184
original average pixel, 185–186
translate pixel, 183–184

Training data, 1
Tree-based algorithms, 71

U
Unsupervised learning, 1, 11–12
User-based collaborative

filtering (UBCF), 302
cosine similarity, 306–310
Euclidian distance, 303–304
UBCF, 311–312

V
Validation dataset, 3–5
Vanishing gradient, 244
Variable transformations, 13
Virtual machine (VM), 327

Index

372

W, X, Y, Z
Word2vec model

frequent words, 174
gensim package, 175–176
negative sampling, 175
one-hot-encode, 167

Word vector
context words, 168
dimensional vector

cross entropy loss, 171
hidden layer, 169–170
softmax, 171

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Basics of Machine Learning
	Regression and Classification
	Training and Testing Data
	The Need for Validation Dataset
	Measures of Accuracy
	Absolute Error
	Root Mean Square Error
	Confusion Matrix

	AUC Value and ROC Curve

	Unsupervised Learning
	Typical Approach Towards Building a Model
	Where Is the Data Fetched From?
	Which Data Needs to Be Fetched?
	Pre-processing the Data
	Feature Interaction
	Feature Generation
	Building the Models
	Productionalizing the Models
	Build, Deploy, Test, and Iterate

	Summary

	Chapter 2: Linear Regression
	Introducing Linear Regression
	Variables: Dependent and Independent
	Correlation
	Causation

	Simple vs. Multivariate Linear Regression
	Formalizing Simple Linear Regression
	The Bias Term
	The Slope

	Solving a Simple Linear Regression
	More General Way of Solving a Simple Linear Regression
	Minimizing the Overall Sum of Squared Error
	Solving the Formula

	Working Details of Simple Linear Regression
	Complicating Simple Linear Regression a Little
	Arriving at Optimal Coefficient Values
	Introducing Root Mean Squared Error

	Running a Simple Linear Regression in R
	Residuals
	Coefficients
	SSE of Residuals (Residual Deviance)
	Null Deviance
	R Squared
	F-statistic

	Running a Simple Linear Regression in Python
	Common Pitfalls of Simple Linear Regression
	Multivariate Linear Regression
	Working details of Multivariate Linear Regression
	Multivariate Linear Regression in R
	Multivariate Linear Regression in Python
	Issue of Having a Non-significant Variable in the Model
	Issue of Multicollinearity
	Mathematical Intuition of Multicollinearity
	Further Points to Consider in Multivariate Linear Regression

	Assumptions of Linear Regression
	Summary

	Chapter 3: Logistic Regression
	Why Does Linear Regression Fail for Discrete Outcomes?
	A More General Solution: Sigmoid Curve
	Formalizing the Sigmoid Curve (Sigmoid Activation)
	From Sigmoid Curve to Logistic Regression
	Interpreting the Logistic Regression
	Working Details of Logistic Regression
	Estimating Error
	Scenario 1
	Scenario 2

	Least Squares Method and Assumption of Linearity

	Running a Logistic Regression in R
	Running a Logistic Regression in Python
	Identifying the Measure of Interest
	Common Pitfalls
	Time Between Prediction and the Event Happening
	Outliers in Independent variables

	Summary

	Chapter 4: Decision Tree
	Components of a Decision Tree
	Classification Decision Tree When There Are Multiple Discrete Independent Variables
	Information Gain
	Calculating Uncertainty: Entropy
	Calculating Information Gain
	Uncertainty in the Original Dataset
	Measuring the Improvement in Uncertainty
	Which Distinct Values Go to the Left and Right Nodes
	Gini Impurity
	Splitting Sub-nodes Further

	When Does the Splitting Process Stop?

	Classification Decision Tree for Continuous Independent Variables
	Classification Decision Tree When There Are Multiple Independent Variables
	Classification Decision Tree When There Are Continuous and Discrete Independent Variables
	What If the Response Variable Is Continuous?
	Continuous Dependent Variable and Multiple Continuous Independent Variables
	Continuous Dependent Variable and Discrete Independent Variable
	Continuous Dependent Variable and Discrete, Continuous Independent Variables

	Implementing a Decision Tree in R
	Implementing a Decision Tree in Python
	Common Techniques in Tree Building
	Visualizing a Tree Build
	Impact of Outliers on Decision Trees
	Summary

	Chapter 5: Random Forest
	A Random Forest Scenario
	Bagging
	Working Details of a Random Forest

	Implementing a Random Forest in R
	Parameters to Tune in a Random Forest
	Variation of AUC by Depth of Tree

	Implementing a Random Forest in Python
	Summary

	Chapter 6: Gradient Boosting Machine
	Gradient Boosting Machine
	Working details of GBM
	Shrinkage
	AdaBoost
	Theory of AdaBoost
	Working Details of AdaBoost

	Additional Functionality for GBM
	Implementing GBM in Python
	Implementing GBM in R
	Summary

	Chapter 7: Artificial Neural Network
	Structure of a Neural Network
	Working Details of Training a Neural Network
	Forward Propagation
	Applying the Activation Function
	Back Propagation
	Working Out Back Propagation
	Stochastic Gradient Descent
	Diving Deep into Gradient Descent
	Why Have a Learning Rate?

	Batch Training
	The Concept of Softmax

	Different Loss Optimization Functions
	Scaling a Dataset
	Scenario Without Scaling the Input
	Scenario with Input Scaling

	Implementing Neural Network in Python
	Avoiding Over-fitting using Regularization
	Assigning Weightage to Regularization term
	Implementing Neural Network in R
	Summary

	Chapter 8: Word2vec
	Hand-Building a Word Vector
	Methods of Building a Word Vector
	Issues to Watch For in a Word2vec Model
	Frequent Words
	Negative Sampling

	Implementing Word2vec in Python
	Summary

	Chapter 9: Convolutional Neural Network
	The Problem with Traditional NN
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	Understanding the Convolutional in CNN
	From Convolution to Activation
	From Convolution Activation to Pooling
	How Do Convolution and Pooling Help?

	Creating CNNs with Code
	Working Details of CNN
	Deep Diving into Convolutions/Kernels
	From Convolution and Pooling to Flattening: Fully Connected Layer
	From One Fully Connected Layer to Another
	From Fully Connected Layer to Output Layer

	Connecting the Dots: Feed Forward Network
	Other Details of CNN
	Backward Propagation in CNN
	Putting It All Together
	Data Augmentation
	Implementing CNN in R
	Summary

	Chapter 10: Recurrent Neural Network
	Understanding the Architecture
	Interpreting an RNN
	Working Details of RNN
	Time Step 1
	Time Step 2
	Time Step 3

	Implementing RNN: SimpleRNN
	Compiling a Model
	Verifying the Output of RNN

	Implementing RNN: Text Generation
	Embedding Layer in RNN
	Issues with Traditional RNN
	The Problem of Vanishing Gradient
	The Problem of Exploding Gradients

	LSTM
	Implementing Basic LSTM in keras
	Implementing LSTM for Sentiment Classification
	Implementing RNN in R
	Summary

	Chapter 11: Clustering
	Intuition of clustering
	Building Store Clusters for Performance Comparison
	Ideal Clustering
	Striking a Balance Between No Clustering and Too Much Clustering: K-means Clustering

	The Process of Clustering
	Working Details of K-means Clustering Algorithm
	Applying the K-means Algorithm on a Dataset
	Properties of the K-means Clustering Algorithm
	Totss (Total Sum of Squares)
	Cluster Centers
	Tot.withinss
	Betweenss

	Implementing K-means Clustering in R
	Implementing K-means Clustering in Python
	Significance of the Major Metrics
	Identifying the Optimal K
	Top-Down Vs. Bottom-Up Clustering
	Hierarchical Clustering
	Major Drawback of Hierarchical Clustering

	Industry Use-Case of K-means Clustering
	Summary

	Chapter 12: Principal Component Analysis
	Intuition of PCA
	Working Details of PCA
	Scaling Data in PCA
	Extending PCA to Multiple Variables
	Implementing PCA in R
	Implementing PCA in Python
	Applying PCA to MNIST
	Summary

	Chapter 13: Recommender Systems
	Understanding k-nearest Neighbors
	Working Details of User-Based Collaborative Filtering
	Euclidian Distance
	Normalizing for a User
	Issue with Considering a Single User

	Cosine Similarity
	Weighted Average Rating Calculation
	Choosing the Right Approach
	Calculating the Error

	Issues with UBCF

	Item-Based Collaborative Filtering
	Implementing Collaborative Filtering in R
	Implementing Collaborative Filtering in Python
	Working Details of Matrix Factorization
	Implementing Matrix Factorization in Python
	Implementing Matrix Factorization in R
	Summary

	Chapter 14: Implementing Algorithms in the Cloud
	Google Cloud Platform
	Microsoft Azure Cloud Platform
	Amazon Web Services
	Transferring Files to the Cloud Instance
	Running Instance Jupyter Notebooks from Your Local Machine
	Installing R on the Instance
	Summary

	Appendix: Basics of Excel, R, and Python
	Basics of Excel
	Basics of R
	Downloading R
	Installing and Configuring RStudio
	Getting Started with RStudio

	Basics of Python
	Downloading and installing Python
	Basic operations in Python
	Numpy
	Number generation using Numpy
	Slicing and indexing
	Pandas
	Indexing and slicing using Pandas
	Summarizing data

	Index

